Sef1, rapid-cycling Brassica napus for large-scale functional genome research in a controlled environment.
Journal
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
ISSN: 1432-2242
Titre abrégé: Theor Appl Genet
Pays: Germany
ID NLM: 0145600
Informations de publication
Date de publication:
27 Jun 2023
27 Jun 2023
Historique:
received:
09
01
2023
accepted:
05
06
2023
medline:
29
6
2023
pubmed:
27
6
2023
entrez:
27
6
2023
Statut:
epublish
Résumé
We demonstrated a short-cycle B. napus line, Sef1, with a highly efficient and fast transformation system, which has great potential in large-scale functional gene analysis in a controlled environment. Rapeseed (Brassica napus L.) is an essential oil crop that accounts for a considerable share of global vegetable oil production. Nonetheless, studies on functional genes of B. napus are lagging behind due to the complicated genome and long growth cycle, this is largely due to the limited availability of gene analysis and modern genome editing-based molecular breeding. In this study, we demonstrated a short-cycle semi-winter-type Brassica napus 'Sef1' with very early-flowering and dwarf phenotype, which has great potential in large-scale indoor planting. Through the construction of an F
Identifiants
pubmed: 37368122
doi: 10.1007/s00122-023-04402-1
pii: 10.1007/s00122-023-04402-1
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
163Subventions
Organisme : Zhejiang Provincial Natural Science Foundation of China
ID : LY21C130008
Organisme : Shanghai Agricultural Foundation
ID : 202001
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Bailey-Serres J, Parker JE, Ainsworth EA, Oldroyd GED, Schroeder JI (2019) Genetic strategies for improving crop yields. Nature 575:109–118
pubmed: 31695205
pmcid: 7024682
doi: 10.1038/s41586-019-1679-0
Bayer PE, Hurgobin B, Golicz AA, Chan CK, Yuan Y, Lee H, Renton M, Meng J, Li R, Long Y, Zou J, Bancroft I, Chalhoub B, King GJ, Batley J, Edwards D (2017) Assembly and comparison of two closely related Brassica napus genomes. Plant Biotechnol J 15:1602–1610
pubmed: 28403535
pmcid: 5698052
doi: 10.1111/pbi.12742
Bhalla PL, Singh MB (2008) Agrobacterium-mediated transformation of Brassica napus and Brassica oleracea. Nat Protoc 3:181–189
pubmed: 18274519
doi: 10.1038/nprot.2007.527
Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C (2017) CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol 174:935–942
pubmed: 28584067
pmcid: 5462057
doi: 10.1104/pp.17.00426
Cai F, Shao C, Zhang Y, Shi G, Bao Z, Bao M, Zhang J (2021) Two FD homologs from London plane (Platanus acerifolia) are associated with floral initiation and flower morphology. Plant Sci 310:110971
pubmed: 34315589
doi: 10.1016/j.plantsci.2021.110971
Cardoza V, Stewart CN Jr (2006) Canola (Brassica napus L.). Methods Mol Biol 343:257–266
pubmed: 16988350
Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B, Correa M, Da Silva C, Just J, Falentin C, Koh CS, Le Clainche I, Bernard M, Bento P, Noel B, Labadie K, Alberti A, Charles M, Arnaud D, Guo H, Daviaud C, Alamery S, Jabbari K, Zhao M, Edger PP, Chelaifa H, Tack D, Lassalle G, Mestiri I, Schnel N, Le Paslier MC, Fan G, Renault V, Bayer PE, Golicz AA, Manoli S, Lee TH, Thi VH, Chalabi S, Hu Q, Fan C, Tollenaere R, Lu Y, Battail C, Shen J, Sidebottom CH, Wang X, Canaguier A, Chauveau A, Berard A, Deniot G, Guan M, Liu Z, Sun F, Lim YP, Lyons E, Town CD, Bancroft I, Wang X, Meng J, Ma J, Pires JC, King GJ, Brunel D, Delourme R, Renard M, Aury JM, Adams KL, Batley J, Snowdon RJ, Tost J, Edwards D, Zhou Y, Hua W, Sharpe AG, Paterson AH, Guan C, Wincker P (2014) Plant genetics. Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953
pubmed: 25146293
doi: 10.1126/science.1253435
Chen M, Penfield S (2018) Feedback regulation of COOLAIR expression controls seed dormancy and flowering time. Science 360:1014–1017
pubmed: 29853684
doi: 10.1126/science.aar7361
Fan F, Li N, Chen Y, Liu X, Sun H, Wang J, He G, Zhu Y, Li S (2017) Development of elite BPH-resistant wide-spectrum restorer lines for three and two line hybrid rice. Front Plant Sci 8:986
pubmed: 28638401
pmcid: 5461369
doi: 10.3389/fpls.2017.00986
Fornara F, de Montaigu A, Coupland G (2010) SnapShot: control of flowering in Arabidopsis. Cell 141:550
pubmed: 20434991
doi: 10.1016/j.cell.2010.04.024
Freytes SN, Canelo M, Cerdan PD (2021) Regulation of flowering time: when and where? Curr Opin Plant Biol 63:102049
pubmed: 33975153
doi: 10.1016/j.pbi.2021.102049
Fu W, Shen Y, Hao J, Wu J, Ke L, Wu C, Huang K, Luo B, Xu M, Cheng X, Zhou X, Sun J, Xing C, Sun Y (2015) Acyl-CoA N-acyltransferase influences fertility by regulating lipid metabolism and jasmonic acid biogenesis in cotton. Sci Rep 5:11790
pubmed: 26134787
pmcid: 4488762
doi: 10.1038/srep11790
Gacek K, Bartkowiak-Broda I, Batley J (2018) Genetic and molecular regulation of seed storage proteins (SSPs) to improve protein nutritional value of oilseed rape (Brassica napus L.) Seeds. Front Plant Sci 9:890
pubmed: 30013586
pmcid: 6036235
doi: 10.3389/fpls.2018.00890
Gupta A, Rico-Medina A, Cano-Delgado AI (2020) The physiology of plant responses to drought. Science 368:266–269
pubmed: 32299946
doi: 10.1126/science.aaz7614
He Y, Chen T, Zeng X (2020) Genetic and epigenetic understanding of the seasonal timing of flowering. Plant Commun 1:100008
pubmed: 33404547
doi: 10.1016/j.xplc.2019.100008
Jin Q, Gao G, Guo C, Yang T, Li G, Song J, Zheng N, Yin S, Yi L, Li Z, Ge X, King GJ, Wang J, Zhou G (2022) Transposon insertions within alleles of BnaFT.A2 are associated with seasonal crop type in rapeseed. Theor Appl Genet 135:3469–3483
pubmed: 35997786
doi: 10.1007/s00122-022-04193-x
Jing Y, Guo Q, Lin R (2019) The chromatin-remodeling factor PICKLE antagonizes polycomb repression of FT to promote flowering. Plant Physiol 181:656–668
pubmed: 31377725
pmcid: 6776858
doi: 10.1104/pp.19.00596
Karimi M, Inze D, Depicker A (2002) GATEWAY vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195
pubmed: 11992820
doi: 10.1016/S1360-1385(02)02251-3
Ke L, Lei W, Yang W, Wang J, Gao J, Cheng J, Sun Y, Fan Z, Yu D (2020) Genome-wide identification of cold responsive transcription factors in Brassica napus L. BMC Plant Biol 20:62
pubmed: 32028890
pmcid: 7006134
doi: 10.1186/s12870-020-2253-5
Lee J, Lee I (2010) Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot 61:2247–2254
pubmed: 20413527
doi: 10.1093/jxb/erq098
Lee H, Chawla HS, Obermeier C, Dreyer F, Abbadi A, Snowdon R (2020) Chromosome-scale assembly of winter oilseed rape Brassica napus. Front Plant Sci 11:496
pubmed: 32411167
pmcid: 7202327
doi: 10.3389/fpls.2020.00496
Liu M, Fan F, He S, Guo Y, Chen G, Li N, Li N, Yuan H, Si F, Yang F, Li S (2022) Creation of elite rice with high-yield, superior-quality and high resistance to brown planthopper based on molecular design. Rice 15:17
pubmed: 35290527
pmcid: 8924342
doi: 10.1186/s12284-022-00563-7
Lu K, Wei L, Li X, Wang Y, Wu J, Liu M, Zhang C, Chen Z, Xiao Z, Jian H, Cheng F, Zhang K, Du H, Cheng X, Qu C, Qian W, Liu L, Wang R, Zou Q, Ying J, Xu X, Mei J, Liang Y, Chai YR, Tang Z, Wan H, Ni Y, He Y, Lin N, Fan Y, Sun W, Li NN, Zhou G, Zheng H, Wang X, Paterson AH, Li J (2019) Whole-genome resequencing reveals Brassica napus origin and genetic loci involved in its improvement. Nat Commun 10:1154
pubmed: 30858362
pmcid: 6411957
doi: 10.1038/s41467-019-09134-9
Luo X, Chen T, Zeng X, He D, He Y (2019) Feedback Regulation of FLC by FLOWERING LOCUS T (FT) and FD through a 5′FLC promoter region in Arabidopsis. Mol Plant 12:285–288
pubmed: 30685381
doi: 10.1016/j.molp.2019.01.013
Maheshwari P, Selvaraj G, Kovalchuk I (2011) Optimization of Brassica napus (canola) explant regeneration for genetic transformation. New Biotechnol 29:144–155
doi: 10.1016/j.nbt.2011.06.014
Mehraj H, Akter A, Miyaji N, Miyazaki J, Shea DJ, Fujimoto R, Doullah MA (2020) Genetics of clubroot and fusarium wilt disease resistance in Brassica vegetables: the application of marker assisted breeding for disease resistance. Plants 9:726
pubmed: 32526827
pmcid: 7355935
doi: 10.3390/plants9060726
Michaels SD, Amasino RM (1999) FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11:949–956
pubmed: 10330478
pmcid: 144226
doi: 10.1105/tpc.11.5.949
Naeem M, Ali Z, Khan A, Sami Ul A, Chaudhary HJ, Ashraf J, Baloch FS (2022) Omics: a tool for resilient rice genetic improvement strategies. Mol Biol Rep 49:5075–5088
pubmed: 35298758
doi: 10.1007/s11033-022-07189-4
Peleman JD, van der Voort JR (2003) Breeding by design. Trends Plant Sci 8:330–334
pubmed: 12878017
doi: 10.1016/S1360-1385(03)00134-1
Rahman M, Sun Z, McVetty PB, Li G (2008) High throughput genome-specific and gene-specific molecular markers for erucic acid genes in Brassica napus (L.) for marker-assisted selection in plant breeding. Theor Appl Genet 117:895–904
pubmed: 18633592
doi: 10.1007/s00122-008-0829-9
Shamsudin NA, Swamy BP, Ratnam W, Sta Cruz MT, Raman A, Kumar A (2016) Marker assisted pyramiding of drought yield QTLs into a popular Malaysian rice cultivar, MR219. BMC Genet 17:30
pubmed: 26818269
pmcid: 4729146
doi: 10.1186/s12863-016-0334-0
Shao C, Cai F, Zhang Y, Bao Z, Shi G, Bao M, Zhang J (2022) Regulation of alternative splicing of PaFT and PaFDL1, the FT and FD homologs in Platanus acerifolia. Gene 830:146506
pubmed: 35447236
doi: 10.1016/j.gene.2022.146506
Sharma N, Geuten K, Giri BS, Varma A (2020) The molecular mechanism of vernalization in Arabidopsis and cereals: role of Flowering Locus C and its homologs. Physiol Plant 170:373–383
pubmed: 32623749
doi: 10.1111/ppl.13163
Sparrow PA, Irwin JA (2015) Brassica oleracea and B. napus. Kan Wang (ed), Agrobacterium Protocols: Methods in Molecular Biology 1223: 287–297
Srikanth A, Schmid M (2011) Regulation of flowering time: all roads lead to Rome. Cell Mol Life Sci 68:2013–2037
pubmed: 21611891
doi: 10.1007/s00018-011-0673-y
Sun F, Fan G, Hu Q, Zhou Y, Guan M, Tong C, Li J, Du D, Qi C, Jiang L, Liu W, Huang S, Chen W, Yu J, Mei D, Meng J, Zeng P, Shi J, Liu K, Wang X, Wang X, Long Y, Liang X, Hu Z, Huang G, Dong C, Zhang H, Li J, Zhang Y, Li L, Shi C, Wang J, Lee SM, Guan C, Xu X, Liu S, Liu X, Chalhoub B, Hua W, Wang H (2017) The high-quality genome of Brassica napus cultivar “ZS11” reveals the introgression history in semi-winter morphotype. Plant J 92:452–468
pubmed: 28849613
doi: 10.1111/tpj.13669
Sun Y, Zhang D, Zheng H, Wu Y, Mei J, Ke L, Yu D, Sun Y (2022) Biochemical and expression analyses revealed the involvement of proanthocyanidins and/or their derivatives in fiber pigmentation of Gossypium stocksii. Int J Mol Sci 23:1008
pubmed: 35055193
pmcid: 8779443
doi: 10.3390/ijms23021008
Teng Y, Liang Y, Wang M, Mai H, Ke L (2019) Nitrate transporter 1.1 is involved in regulating flowering time via transcriptional regulation of Flowering Locus C in Arabidopsis thaliana. Plant Sci 284:30–36
pubmed: 31084876
doi: 10.1016/j.plantsci.2019.04.002
Tudor EH, Jones DM, He Z, Bancroft I, Trick M, Wells R, Irwin JA, Dean C (2020) QTL-seq identifies BnaFT.A02 and BnaFLC.A02 as candidates for variation in vernalization requirement and response in winter oilseed rape (Brassica napus). Plant Biotechnol J 18:2466–2481
pubmed: 32452611
pmcid: 7680531
doi: 10.1111/pbi.13421
Vollrath P, Chawla HS, Schiessl SV, Gabur I, Lee H, Snowdon RJ, Obermeier C (2021) A novel deletion in Flowering Locus T modulates flowering time in winter oilseed rape. Theor Appl Genet 134:1217–1231
pubmed: 33471161
pmcid: 7973412
doi: 10.1007/s00122-021-03768-4
Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey MD, Asyraf Md, Hatta M, Hinchliffe A, Steed A, Reynolds D, Adamski NM, Breakspear A, Korolev A, Rayner T, Dixon LE, Riaz A, Martin W, Ryan M, Edwards D, Batley J, Raman H, Carter J, Rogers C, Domoney C, Moore G, Harwood W, Nicholson P, Dieters MJ, DeLacy IH, Zhou J, Uauy C, Boden SA, Park RF, Wulff BBH, Hickey LT (2018) Speed breeding is a powerful tool to accelerate crop research and breeding. Nat Plants 4:23–29
pubmed: 29292376
doi: 10.1038/s41477-017-0083-8
Wei L, Xiao M, Hayward A, Fu D (2013) Applications and challenges of next-generation sequencing in Brassica species. Planta 238:1005–1024
pubmed: 24062086
doi: 10.1007/s00425-013-1961-6
Wu D, Liang Z, Yan T, Xu Y, Xuan L, Tang J, Zhou G, Lohwasser U, Hua S, Wang H, Chen X, Wang Q, Zhu L, Maodzeka A, Hussain N, Li Z, Li X, Shamsi IH, Jilani G, Wu L, Zheng H, Zhang G, Chalhoub B, Shen L, Yu H, Jiang L (2019) Whole-genome resequencing of a worldwide collection of rapeseed accessions reveals the genetic basis of ecotype divergence. Mol Plant 12:30–43
pubmed: 30472326
doi: 10.1016/j.molp.2018.11.007
Xiao Q, Wang H, Song N, Yu Z, Imran K, Xie W, Qiu S, Zhou F, Wen J, Dai C, Ma C, Tu J, Shen J, Fu T, Yi B (2021) The Bnapus50K array: a quick and versatile genotyping tool for Brassica napus genomic breeding and research. G3 Bethesda 11:jkab241
pubmed: 34568935
pmcid: 8473974
doi: 10.1093/g3journal/jkab241
Xuan L, Yan T, Lu L, Zhao X, Wu D, Hua S, Jiang L (2020) Genome-wide association study reveals new genes involved in leaf trichome formation in polyploid oilseed rape (Brassica napus L.). Plant, Cell Environ 43:675–691
pubmed: 31889328
doi: 10.1111/pce.13694
Zeng D, Tian Z, Rao Y, Dong G, Yang Y, Huang L, Leng Y, Xu J, Sun C, Zhang G, Hu J, Zhu L, Gao Z, Hu X, Guo L, Xiong G, Wang Y, Li J, Qian Q (2017) Rational design of high-yield and superior-quality rice. Nat Plants 3:17031
pubmed: 28319055
doi: 10.1038/nplants.2017.31
Zhu D, Rosa S, Dean C (2015) Nuclear organization changes and the epigenetic silencing of FLC during vernalization. J Mol Biol 427:659–669
pubmed: 25180639
doi: 10.1016/j.jmb.2014.08.025
Zhu L, Zhao X, Xu Y, Wang Q, Wang H, Wu D, Jiang L (2020) Effect of germination potential on storage lipids and transcriptome changes in premature developing seeds of oilseed rape (Brassica napus L.). Theor Appl Genet 133:2839–2852
pubmed: 32617616
doi: 10.1007/s00122-020-03636-7