Genetic inconsistency at the D6S1043 locus caused by microdeletion at 6q15.


Journal

International journal of legal medicine
ISSN: 1437-1596
Titre abrégé: Int J Legal Med
Pays: Germany
ID NLM: 9101456

Informations de publication

Date de publication:
Sep 2023
Historique:
received: 06 04 2023
accepted: 12 06 2023
medline: 14 8 2023
pubmed: 7 7 2023
entrez: 6 7 2023
Statut: ppublish

Résumé

In the practice of parentage testing, short tandem repeat (STR) genetic inconsistencies occasionally occur and are usually treated as genetic mutations. However, they arise for various reasons. To elucidate the reasons for their occurrence, this study investigates a typical trio. For the D6S1043 locus, the genotype of the biological mother comprised the heterozygous alleles "7,20"; that of the child, allele 20; and that of the alleged father, a heterozygous allele "11,13," revealing a 7-step mutation. Different kits were first used to verify the data. The locus map, primers, and core sequences were then analyzed. Ultimately, the STR and single nucleotide polymorphisms of 6q were tested to determine the microdeletion range. The results revealed that this was indeed a true trio, and the underlying cause of the genetic inconsistency at this locus was a microdeletion of approximately 0.74-1.78 Mb in 6q15. Overall, genetic inconsistencies detected during practical work, and particularly rare multi-step mutations, cannot be directly identified as STR mutations. Different tools should be used to examine the causes of genetic inconsistencies from various perspectives and improve the effectiveness of genetic evidence.

Identifiants

pubmed: 37414920
doi: 10.1007/s00414-023-03044-8
pii: 10.1007/s00414-023-03044-8
doi:

Substances chimiques

DNA Primers 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1413-1419

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Hou Y (2013) Judicial expertise practice of forensic biology. Law Press, Beijing
Geada H, Ribeiro T, Brito RM, Espinheira R, Rolf B, Hohoff C, Brinkmann B (2001) A STR mutation in a heteropaternal twin case. Forensic Sci Int 123:239–242. https://doi.org/10.1016/S0379-0738(01)00494-7
doi: 10.1016/S0379-0738(01)00494-7 pubmed: 11728756
Klintschar M, Dauber EM, Ricci U, Cerri N, Immel UD, Kleiber M, Mayr WR (2004) Haplotype studies support slippage as the mechanism of germline mutations in short tandem repeats. Electrophoresis 25:3344–3348. https://doi.org/10.1002/elps.200406069
doi: 10.1002/elps.200406069 pubmed: 15490457
Vieira TC, Gigonzac MAD, Rodovalho RG, Cavalcanti LM, Minasi LM, Rodrigues FM, da Cruz AD (2017) Mutation rates in 21 autosomal short tandem repeat loci in a population from Goiás, Brazil. Electrophoresis 38:2791–2794. https://doi.org/10.1002/elps.201700192
doi: 10.1002/elps.201700192 pubmed: 28792614
Giardina E, Peconi C, Cascella R, Sinibaldi C, Cuzzola VF, Nardone AM, Bramanti P, Novelli G (2009) A multiplex molecular assay for the detection of uniparental disomy for human chromosome 7. Electrophoresis 30:2008–2011. https://doi.org/10.1002/elps.200800744
doi: 10.1002/elps.200800744 pubmed: 19517448
Leibelt C, Budowle B, Collins P, Daoudi Y, Moretti T, Nunn G, Reeder D, Roby R (2003) Identification of a D8S1179 primer binding site mutation and the validation of a primer designed to recover null alleles. Forensic Sci Int 133:220–227. https://doi.org/10.1016/s0379-0738(03)00035-5
doi: 10.1016/s0379-0738(03)00035-5 pubmed: 12787655
Fernández L, Lapunzina P, Arjona D, Pajares IL, García-Guereta L, Elorza D, Burgueros M, De Torres ML, Mori MA, Palomares M, García-Alix A, Delicado A (2005) Comparative study of three diagnostic approaches (FISH, STRs and MLPA) in 30 patients with 22q11.2 deletion syndrome. Clin Genet 68:373–378. https://doi.org/10.1111/j.1399-0004.2005.00493.x
doi: 10.1111/j.1399-0004.2005.00493.x pubmed: 16143025
Walsh PS, Metzger DA, Higuchi R (1991) Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. BioTechniques 10:506–513. https://doi.org/10.2144/000114018
doi: 10.2144/000114018 pubmed: 1867860
Overview of STR fact sheet—D6S1043. https://strbase.nist.gov/str_D6S1043.htm. Accessed 2 March 2023
Valdes AM, Slatkin M, Freimer NB (1993) Allele frequencies at microsatellite loci: the stepwise mutation model revisited. Genetics 133(3):737–749. https://doi.org/10.1093/genetics/133.3.737
doi: 10.1093/genetics/133.3.737 pubmed: 8454213 pmcid: 1205356
Fu YX, Chakraborty R (1998) Simultaneous estimation of all the parameters of a stepwise mutation model. Genetics 150(1):487–497. https://doi.org/10.1093/genetics/150.1.487
doi: 10.1093/genetics/150.1.487 pubmed: 9725863 pmcid: 1460324
The Ministry of Justice, the People’s Republic of China (2018) Specification of parentage testing (GB/T 37223-2018). https://openstd.samr.gov.cn/bzgk/gb/newGbInfo?hcno=276563242ECF1754FD2AAC6DD7921849 .
Xiao C, Wang Y, Liao F, Yi S, Huang D (2019) Microdeletion at 8q24.13 rather than multistep microsatellite mutation resulting in the genetic inconsistency at the D8S1179 locus in a true trio. Int J Leg Med 133:999–1006. https://doi.org/10.1007/s00414-018-1900-y
doi: 10.1007/s00414-018-1900-y
Chen L, Tai Y, Qiu P, Du W, Liu C (2015) A silent allele in the locus D5S818 contained within the PowerPlex
doi: 10.1016/j.legalmed.2015.10.012 pubmed: 26593999
Li F, Xuan J, Xing J, Ding M, Wang B, Pang H (2014) Identification of new primer binding site mutations at TH01 and D13S317 loci and determination of their corresponding STR alleles by allele-specific PCR. Forensic Sci Int Genet 8:143–146. https://doi.org/10.1016/j.fsigen.2013.08.013
doi: 10.1016/j.fsigen.2013.08.013 pubmed: 24315602
Ricci U, Melean G, Robino C, Genuardi M (2007) A single mutation in the FGA locus responsible for false homozygosities and discrepancies between commercial kits in an unusual paternity test case. J Forensic Sci 52:393–396. https://doi.org/10.1111/j.1556-4029.2006.00357.x
doi: 10.1111/j.1556-4029.2006.00357.x pubmed: 17316238
Takayama T, Takada N, Suzuki R, Nagaoka S, Watanabe Y (2007) Identification of a rare mutation in a TH01 primer binding site. Leg Med (Tokyo) 9:289–292. https://doi.org/10.1016/j.legalmed.2007.04.003
doi: 10.1016/j.legalmed.2007.04.003 pubmed: 17562382
Jiang L, Song M, Wang Z, Wei X, Zhou Y, Wang S, Zha L, Song F, Luo H (2023) Large fragment Sanger sequencing identifies the newly encountered variant that caused null alleles in parentage testing. Int J Leg Med 137:57–61. https://doi.org/10.1007/s00414-022-02901-2
doi: 10.1007/s00414-022-02901-2
Yao Y, Yang Q, Shao C, Liu B, Zhou Y, Xu H, Zhou Y, Tang Q, Xie J (2018) Null alleles and sequence variations at primer binding sites of STR loci within multiplex typing systems. Leg Med (Tokyo) 30:10–13. https://doi.org/10.1016/j.legalmed.2017.10.007
doi: 10.1016/j.legalmed.2017.10.007 pubmed: 29125964
Kline MC, Hill CR, Decker AE, Butler JM (2011) STR sequence analysis for characterizing normal, variant, and null alleles. Forensic Sci Int Genet 5:329–332. https://doi.org/10.1016/j.fsigen.2010.09.005
doi: 10.1016/j.fsigen.2010.09.005 pubmed: 20932816
Cavalheiro CP, Avila E, Gastaldo AZ, Graebin P, Motta CHA, Rodenbusch R, Alho CS (2020) Uniparental disomy of chromosome 21: a statistical approach and application in paternity tests. Forensic Sci Int Genet 49:1–6. https://doi.org/10.1016/j.fsigen.2020.102368
doi: 10.1016/j.fsigen.2020.102368
Benn P (2021) Uniparental disomy: origin, frequency, and clinical significance. Prenat Diagn 41:564–572. https://doi.org/10.1002/pd.5837
doi: 10.1002/pd.5837 pubmed: 33179335
Ting JC, Roberson ED, Miller ND, Lysholm-Bernacchi A, Stephan DA, Capone GT, Ruczinski I, Thomas GH, Pevsner J (2007) Visualization of uniparental inheritance, Mendelian inconsistencies, deletions, and parent of origin effects in single nucleotide polymorphism trio data with SNPtrio. Hum Mutat 28:1225–1235. https://doi.org/10.1002/humu.20583
doi: 10.1002/humu.20583 pubmed: 17661425
Watson CT, Marques-Bonet T, Sharp AJ, Mefford HC (2014) The genetics of microdeletion and microduplication syndromes: an update. Annu Rev Genomics Hum Genet 15:215–244. https://doi.org/10.1146/annurev-genom-091212-153408
doi: 10.1146/annurev-genom-091212-153408 pubmed: 24773319 pmcid: 4476258
Lebok P, Bönte H, Kluth M, Möller-Koop C, Witzel I, Wölber L, Paluchowski P, Wilke C, Heilenkötter U, Müller V, Schmalfeldt B, Simon R, Sauter G, Terracciano L, Krech RH, von der Assen A, Burandt E (2022) 6q deletion is frequent but unrelated to patient prognosis in breast cancer. Breast Cancer 29:216–223. https://doi.org/10.1007/s12282-021-01301-5
doi: 10.1007/s12282-021-01301-5 pubmed: 34625909

Auteurs

Hongyan Wu (H)

School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.

Lin Zhang (L)

School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.

Aiying Fan (A)

School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.

Hui Wu (H)

School of Basic Medicine, Sanquan College of Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China.

Kejie Wang (K)

School of Forensic Medicine, Xinxiang Medical University, Xinxiang, Henan, 453003, People's Republic of China. wkj19800@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH