Ultra-short pulse laser acceleration of protons to 80 MeV from cryogenic hydrogen jets tailored to near-critical density.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
07 Jul 2023
07 Jul 2023
Historique:
received:
22
03
2023
accepted:
26
06
2023
medline:
10
7
2023
pubmed:
8
7
2023
entrez:
7
7
2023
Statut:
epublish
Résumé
Laser plasma-based particle accelerators attract great interest in fields where conventional accelerators reach limits based on size, cost or beam parameters. Despite the fact that particle in cell simulations have predicted several advantageous ion acceleration schemes, laser accelerators have not yet reached their full potential in producing simultaneous high-radiation doses at high particle energies. The most stringent limitation is the lack of a suitable high-repetition rate target that also provides a high degree of control of the plasma conditions required to access these advanced regimes. Here, we demonstrate that the interaction of petawatt-class laser pulses with a pre-formed micrometer-sized cryogenic hydrogen jet plasma overcomes these limitations enabling tailored density scans from the solid to the underdense regime. Our proof-of-concept experiment demonstrates that the near-critical plasma density profile produces proton energies of up to 80 MeV. Based on hydrodynamic and three-dimensional particle in cell simulations, transition between different acceleration schemes are shown, suggesting enhanced proton acceleration at the relativistic transparency front for the optimal case.
Identifiants
pubmed: 37419912
doi: 10.1038/s41467-023-39739-0
pii: 10.1038/s41467-023-39739-0
pmc: PMC10329016
doi:
Substances chimiques
Protons
0
Hydrogen
7YNJ3PO35Z
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4009Subventions
Organisme : DOE | SC | Fusion Energy Sciences (FES)
ID : FWP 100182
Organisme : DOE | SC | Fusion Energy Sciences (FES)
ID : FWP 100182
Organisme : DOE | SC | Fusion Energy Sciences (FES)
ID : FWP 100182
Organisme : DOE | SC | Fusion Energy Sciences (FES)
ID : FWP 100182
Organisme : DOE | SC | Fusion Energy Sciences (FES)
ID : FWP 100182
Organisme : DOE | SC | Fusion Energy Sciences (FES)
ID : FWP 100182
Organisme : DOE | SC | Fusion Energy Sciences (FES)
ID : FWP 100182
Informations de copyright
© 2023. The Author(s).
Références
Rev Sci Instrum. 2016 Nov;87(11):11E328
pubmed: 27910321
Phys Rev Lett. 2010 Sep 24;105(13):135002
pubmed: 21230779
Phys Rev Lett. 2000 Aug 21;85(8):1654-7
pubmed: 10970581
Phys Plasmas. 2010 Apr;17(4):
pubmed: 20838426
Sci Rep. 2020 Oct 28;10(1):18452
pubmed: 33116228
Phys Rev Lett. 2000 Oct 2;85(14):2945-8
pubmed: 11005974
Phys Rev Lett. 2004 Apr 30;92(17):175003
pubmed: 15169160
Opt Express. 2021 Mar 15;29(6):9199-9206
pubmed: 33820352
J Vis Exp. 2020 May 9;(159):
pubmed: 32449743
Sci Rep. 2019 Nov 11;9(1):16534
pubmed: 31712576
Phys Rev Lett. 2012 Mar 30;108(13):135001
pubmed: 22540706
Sci Rep. 2017 Aug 31;7(1):10248
pubmed: 28860614
Sci Rep. 2017 Mar 07;7:40415
pubmed: 28266496
Phys Rev Lett. 2009 Mar 27;102(12):125002
pubmed: 19392290
Nat Commun. 2018 Feb 20;9(1):724
pubmed: 29463872
Phys Rev Lett. 2021 Nov 5;127(19):194801
pubmed: 34797126
Phys Rev Lett. 2017 May 12;118(19):194801
pubmed: 28548516
Sci Rep. 2021 Apr 1;11(1):7338
pubmed: 33795713
Rev Sci Instrum. 2014 Nov;85(11):11D602
pubmed: 25430178
Phys Rev Lett. 2016 Feb 26;116(8):085004
pubmed: 26967421
Nat Commun. 2023 Jul 7;14(1):4009
pubmed: 37419912
Sci Rep. 2022 May 4;12(1):7287
pubmed: 35508489
Rep Prog Phys. 2012 May;75(5):056401
pubmed: 22790586
Sci Rep. 2016 Jul 20;6:29402
pubmed: 27435449
Phys Rev Lett. 2012 Mar 16;108(11):115002
pubmed: 22540479
Phys Rev Lett. 2004 May 21;92(20):204801
pubmed: 15169357
Phys Rev Lett. 2013 Feb 22;110(8):085001
pubmed: 23473156
Phys Rev Lett. 2001 Jan 15;86(3):436-9
pubmed: 11177849
Phys Rev Lett. 2003 Sep 19;91(12):125004
pubmed: 14525369
Phys Rev Lett. 2004 Jan 9;92(1):015002
pubmed: 14753995