Species phylogeny, ecology, and root traits as predictors of root exudate composition.
metabolomics
phylogenetic conservatism
rhizosphere
root exudates
root traits
Journal
The New phytologist
ISSN: 1469-8137
Titre abrégé: New Phytol
Pays: England
ID NLM: 9882884
Informations de publication
Date de publication:
08 2023
08 2023
Historique:
received:
17
01
2023
accepted:
04
05
2023
medline:
14
7
2023
pubmed:
8
7
2023
entrez:
8
7
2023
Statut:
ppublish
Résumé
Root traits including root exudates are key factors affecting plant interactions with soil and thus play an important role in determining ecosystem processes. The drivers of their variation, however, remain poorly understood. We determined the relative importance of phylogeny and species ecology in determining root traits and analyzed the extent to which root exudate composition can be predicted by other root traits. We measured different root morphological and biochemical traits (including exudate profiles) of 65 plant species grown in a controlled system. We tested phylogenetic conservatism in traits and disentangled the individual and overlapping effects of phylogeny and species ecology on traits. We also predicted root exudate composition using other root traits. Phylogenetic signal differed greatly among root traits, with the strongest signal in phenol content in plant tissues. Interspecific variation in root traits was partly explained by species ecology, but phylogeny was more important in most cases. Species exudate composition could be partly predicted by specific root length, root dry matter content, root biomass, and root diameter, but a large part of variation remained unexplained. In conclusion, root exudation cannot be easily predicted based on other root traits and more comparative data on root exudation are needed to understand their diversity.
Substances chimiques
Soil
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1212-1224Informations de copyright
© 2023 The Authors. New Phytologist © 2023 New Phytologist Foundation.
Références
Abouheif E. 1999. A method for testing the assumption of phylogenetic independence in comparative data. Evolutionary Ecology Research 1: 895-909.
Ainsworth EA, Gillespie KM. 2007. Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin-Ciocalteu reagent. Nature Protocols 2: 875-877.
Aldorfová A, Knobová P, Münzbergová Z. 2020. Plant-soil feedback contributes to predicting plant invasiveness of 68 alien plant species differing in invasive status. Oikos 129: 1257-1270.
Armitage EG, Godzien J, Alonso-Herranz V, López-Gonzálvez Á, Barbas C. 2015. Missing value imputation strategies for metabolomics data. Electrophoresis 36: 3050-3060.
Badri DV, Chaparro JM, Zhang R, Shen Q, Vivanco JM. 2013. Application of natural blends of phytochemicals derived from the root exudates of Arabidopsis to the soil reveal that phenolic-related compounds predominantly modulate the soil microbiome. Journal of Biological Chemistry 288: 4502-4512.
Barbas C, Lucas García JA, Gutiérrez Mañero FJ. 1999. Separation and identification of organic acids in root exudates of Lupinus luteus by capillary zone electrophoresis. Phytochemical Analysis 10: 55-59.
Bardgett RD, Mommer L, De Vries FT. 2014. Going underground: root traits as drivers of ecosystem processes. Trends in Ecology & Evolution 29: 692-699.
Bartelheimer M, Poschlod P. 2016. Functional characterizations of Ellenberg indicator values - a review on ecophysiological determinants. Functional Ecology 30: 506-516.
van den Berg RA, Hoefsloot HCJ, Westerhuis JA, Smilde AK, van der Werf MJ. 2006. Centering, scaling, and transformations: Improving the biological information content of metabolomics data. BMC Genomics 7: 1-15.
Bergmann J, Weigelt A, Van Der Plas F, Laughlin DC, Kuyper TW, Guerrero-Ramirez N, Valverde-Barrantes OJ, Bruelheide H, Fresche GT, Iversen CM et al. 2020. The fungal collaboration gradient dominates the root economics space in plants. Science Advances 6: 1-10.
Birouste M, Zamora-Ledezma E, Bossard C, Pérez-Ramos IM, Roumet C. 2014. Measurement of fine root tissue density: a comparison of three methods reveals the potential of root dry matter content. Plant and Soil 374: 299-313.
Canarini A, Kaiser C, Merchant A, Richter A, Wanek W. 2019. Root exudation of primary metabolites: mechanisms and their roles in plant responses to environmental stimuli. Frontiers in Plant Science 10: 157.
Cantarel AAM, Pommier T, Desclos-Theveniau M, Diquélou S, Dumont M, Grassein F, Kastl EM, Grigulis K, Laîné P, Lavorel S et al. 2015. Using plant traits to explain plant-microbe relationships involved in nitrogen acquisition. Ecology 96: 788-799.
Carmona CP, Bueno CG, Toussaint A, Träger S, Díaz S, Moora M, Munson AD, Pärtel M, Zobel M, Tamme R. 2021. Fine-root traits in the global spectrum of plant form and function. Nature 597: 683-687.
Carvalhais LC, Dennis PG, Badri DV, Kidd BN, Vivanco JM, Schenk PM. 2015. Linking Jasmonic acid signaling, root exudates, and rhizosphere microbiomes. Molecular Plant-Microbe Interactions 28: 1049-1058.
Cavender-Bares J, González-Rodríguez A, Eaton DAR, Hipp AAL, Beulke A, Manos PS. 2015. Phylogeny and biogeography of the american live oaks (Quercus subsection Virentes): A genomic and population genetics approach. Molecular Ecology 24: 3668-3687.
Cavender-Bares J, Keen A, Miles B. 2006. Phylogenetic structure of Floridian plant communities depends on taxonomic and spatial scale. Ecology 87: 109-122.
Chaparro JM, Badri DV, Bakker MG, Sugiyama A, Manter DK, Vivanco JM. 2013. Root exudation of phytochemicals in Arabidopsis follows specific patterns that are developmentally programmed and correlate with soil microbial functions. PLoS ONE 8: 1-10.
Chytry M, Tichy L, Drevojan P, Sádlo J, Zeleny D. 2018. Ellenberg-type indicator values for the Czech flora Ellenbergovské indikacní hodnoty pro ceskou flóru. Preslia 90: 83-103.
Comas LH, Eissenstat DM. 2009. Patterns in root trait variation among 25 co-existing North American forest species. New Phytologist 182: 919-928.
Comas LH, Mueller KE, Taylor LL, Midford PE, Callahan HS, Beerling DJ. 2012. Evolutionary patterns and biogeochemical significance of angiosperm root traits. International Journal of Plant Sciences 173: 584-595.
Delamare J, Brunel-Muguet S, Morvan-Bertrand A, Cantat O, Firmin S, Trinsoutrot-Gattin I, Le Franc L, Personeni E. 2023. Thermopriming effects on root morphological traits and root exudation during the reproductive phase in two species with contrasting strategies: Brassica napus (L.) and Camelina sativa (L.) Crantz. Environmental and Experimental Botany 210: 105318.
Desdevises Y, Legendre P, Azouzi L, Morand S. 2003. Quantifying phylogenetically structured environmental variation. Evolution 57: 2647-2652.
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, Reu B, Kleyer M, Wirth C, Colin Prentice I et al. 2016. The global spectrum of plant form and function. Nature 529: 167-171.
Dietz S, Herz K, Gorzolka K, Jandt U, Bruelheide H, Scheel D. 2020. Root exudate composition of grass and forb species in natural grasslands. Scientific Reports 10: 1-15.
Diniz-Filho JAF, de Sant’Ana CER, Bini LM. 1998. An eigenvector method for estimating phylogenetic inertia. Evolution 52: 1247-1262.
Diniz-Filho JAF, Santos T, Rangel TF, Bini LM. 2012. A comparison of metrics for estimating phylogenetic signal under alternative evolutionary models. Genetics and Molecular Biology 35: 673-679.
Eisenhauer N, Lanoue A, Strecker T, Scheu S, Steinauer K, Thakur MP, Mommer L. 2017. Root biomass and exudates link plant diversity with soil bacterial and fungal biomass. Scientific Reports 7: 1-8.
Ellenberg H, Weber HE, Düll R, Wirth V, Werner W, Paulißen D. 1991. Zeigerwerte von Pflanzen in Mitteleuropa. Scripta Geobotanica 18: 9-160.
Farag MA, Huhman DV, Lei Z, Sumner LW. 2007. Metabolic profiling and systematic identification of flavonoids and isoflavonoids in roots and cell suspension cultures of Medicago truncatula using HPLC-UV-ESI-MS and GC-MS. Phytochemistry 68: 342-354.
Fort F, Freschet GT. 2020. Plant ecological indicator values as predictors of fine-root trait variations. Journal of Ecology 108: 1565-1577.
Freckleton RP, Harvey PH, Pagel M. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. The American Naturalist 160: 712-726.
Freschet GT, Roumet C, Comas LH, Weemstra M, Bengough AG, Rewald B, Bardgett RD, De Deyn GB, Johnson D, Klimešová J et al. 2021. Root traits as drivers of plant and ecosystem functioning: current understanding, pitfalls and future research needs. New Phytologist 232: 1123-1158.
Freschet GT, Valverde-Barrantes OJ, Tucker CM, Craine JM, McCormack ML, Violle C, Fort F, Blackwood CB, Urban-Mead KR, Iversen CM et al. 2017. Climate, soil and plant functional types as drivers of global fine-root trait variation. Journal of Ecology 105: 1182-1196.
Fridley JD, Bauerle TL, Craddock A, Ebert AR, Frank DA, Heberling JM, Hinman ED, Jo I, Martinez KA, Smith MS et al. 2022. Fast but steady: an integrated leaf-stem-root trait syndrome for woody forest invaders. Ecology Letters 25: 900-912.
Garnier E, Stahl U, Laporte MA, Kattge J, Mougenot I, Kühn I, Laporte B, Amiaud B, Ahrestani FS, Bönisch G et al. 2017. Towards a thesaurus of plant characteristics: an ecological contribution. Journal of Ecology 105: 298-309.
Gatu C, Kontoghiorghes EJ. 2006. Branch-and-bound algorithms for computing the best-subset regression models. Journal of Computational and Graphical Statistics 15: 139-156.
Gibert A, Gray EF, Westoby M, Wright IJ, Falster DS. 2016. On the link between functional traits and growth rate: meta-analysis shows effects change with plant size, as predicted. Journal of Ecology 104: 1488-1503.
Gornish ES, Prather CM. 2014. Foliar functional traits that predict plant biomass response to warming. Journal of Vegetation Science 25: 919-927.
Grutters BMC, Saccomanno B, Gross EM, Van de Waal DB, van Donk E, Bakker ES. 2017. Growth strategy, phylogeny and stoichiometry determine the allelopathic potential of native and non-native plants. Oikos 126: 1770-1779.
Herben T, Klimešová J, Chytrý M. 2018. Effects of disturbance frequency and severity on plant traits: An assessment across a temperate flora. Functional Ecology 32: 799-808.
Herz K, Dietz S, Gorzolka K, Haider S, Jandt U, Scheel D, Bruelheide H. 2018. Linking root exudates to functional plant traits. PLoS ONE 13: 1-14.
Jin Y, Qian H. 2019. v.phylomaker: an R package that can generate very large phylogenies for vascular plants. Ecography 42: 1353-1359.
Johansson EM, Fransson PMA, Finlay RD, van Hees PAW. 2009. Quantitative analysis of soluble exudates produced by ectomycorrhizal roots as a response to ambient and elevated CO2. Soil Biology and Biochemistry 41: 1111-1116.
John A, Weisberg S, Price B, Adler D, Bates D, Baud-bovy G, Bolker B, Ellison S, Graves S, Heiberger R et al. 2022. Package ‘car’. Vienna, Austria: R Foundation for Statistical Computing.
Kaštovská E, Edwards K, Picek T, Šantrůčková H. 2015. A larger investment into exudation by competitive versus conservative plants is connected to more coupled plant-microbe N cycling. Biogeochemistry 122: 47-59.
Keck F, Rimet F, Bouchez A, Franc A. 2016. phylosignal: an R package to measure, test, and explore the phylogenetic signal. Ecology and Evolution 6: 2774-2780.
Kitazawa H, Asao T, Ban T, Pramanik MHR, Hosoki T. 2005. Autotoxicity of root exudates from strawberry in hydroponic culture. Journal of Horticultural Science and Biotechnology 80: 677-680.
Kong D, Ma C, Zhang Q, Li L, Chen X, Zeng H, Guo D. 2014. Leading dimensions in absorptive root trait variation across 96 subtropical forest species. New Phytologist 203: 863-872.
Kong D, Wang J, Wu H, Valverde-Barrantes OJ, Wang R, Zeng H, Kardol P, Zhang H, Feng Y. 2019. Nonlinearity of root trait relationships and the root economics spectrum. Nature Communications 10: 1-9.
Kramer-Walter KR, Bellingham PJ, Millar TR, Smissen RD, Richardson SJ, Laughlin DC. 2016. Root traits are multidimensional: specific root length is independent from root tissue density and the plant economic spectrum. Journal of Ecology 104: 1299-1310.
Kuijken RCP, Snel JFH, Heddes MM, Bouwmeester HJ, Marcelis LFM. 2015. The importance of a sterile rhizosphere when phenotyping for root exudation. Plant and Soil 387: 131-142.
Laliberté E. 2017. Below-ground frontiers in trait-based plant ecology. New Phytologist 213: 1597-1603.
Lattanzio V, Lattanzio VMT, Cardinali A. 2015. Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochemistry 661: 23-67.
Lei Z, Huhman DV, Sumner LW. 2011. Mass spectrometry strategies in metabolomics. Journal of Biological Chemistry 286: 25435-25442.
Liese R, Alings K, Meier IC. 2017. Root branching is a leading root trait of the plant economics spectrum in temperate trees. Frontiers in Plant Science 8: 1-12.
Lumley T, Miller A. 2020. Package ‘leaps’: regression subset selection. R Package v.3. [WWW document] URL https://cran.r-project.org/package=leaps [accessed 16 April 2023].
Luo W, Lan R, Chen D, Zhang B, Xi N, Li Y, Fang S, Valverde-Barrantes OJ, Eissenstat DM, Chu C et al. 2021. Limiting similarity shapes the functional and phylogenetic structure of root neighborhoods in a subtropical forest. New Phytologist 229: 1078-1090.
Meier IC, Tückmantel T, Heitkötter J, Müller K, Preusser S, Wrobel TJ, Kandeler E, Marschner B, Leuschner C. 2020. Root exudation of mature beech forests across a nutrient availability gradient: the role of root morphology and fungal activity. New Phytologist 226: 583-594.
Mommer L, Kirkegaard J, van Ruijven J. 2016. Root-root interactions: towards a rhizosphere framework. Trends in Plant Science 21: 209-217.
Mönchgesang S, Strehmel N, Schmidt S, Westphal L, Taruttis F, Müller E, Herklotz S, Neumann S, Scheel D. 2016. Natural variation of root exudates in Arabidopsis thaliana-linking metabolomic and genomic data. Scientific Reports 6: 29033.
Montesinos-Navarro A, Pérez-Clemente RM, Sánchez-Martín R, Gómez-Cadenas A, Verdú M. 2020. Phylogenetic analysis of secondary metabolites in a plant community provides evidence for trade-offs between biotic and abiotic stress tolerance. Evolutionary Ecology 34: 439-451.
Neumann G, Bott S, Ohler MA, Mock HP, Lippmann R, Grosch R, Smalla K. 2014. Root exudation and root development of lettuce (Lactuca sativa L. Cv. Tizian) as affected by different soils. Frontiers in Microbiology 5: 1-6.
Nordström A, Want E, Northen T, Lehtiö J, Siuzdak G. 2008. Multiple ionization mass spectrometry strategy used to reveal the complexity of metabolomics. Analytical Chemistry 80: 421-429.
Oburger E, Jones DL. 2018. Sampling root exudates - mission impossible? Rhizosphere 6: 116-133.
Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, Ohara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H et al. 2018. vegan: community ecology package. R Package v.2.4-6. [WWW document] URL https://github.com/vegandevs/vegan [accessed 16 April 2023].
Pagel M. 1999. The maximum likelihood approach to reconstructing ancestral character states of discrete characters on phylogenies. Systematic Biology 48: 612-622.
Pang Z, Zhou G, Ewald J, Chang L, Hacariz O, Basu N, Xia J. 2022. Using MetaboAnalyst 5.0 for LC-HRMS spectra processing, multi-omics integration and covariate adjustment of global metabolomics data. Nature Protocols 17: 1735-1761.
Paradis E, Claude J, Strimmer K. 2004. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20: 289-290.
Pétriacq P, Williams A, Cotton A, McFarlane AE, Rolfe SA, Ton J. 2017. Metabolite profiling of non-sterile rhizosphere soil. The Plant Journal 92: 147-162.
R Development Core Team. 2019. R: a language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Rossi LMW, Mao Z, Merino-Martín L, Roumet C, Fort F, Taugourdeau O, Boukcim H, Fourtier S, Del Rey-Granado M, Chevallier T et al. 2020. Pathways to persistence: plant root traits alter carbon accumulation in different soil carbon pools. Plant and Soil 452: 457-478.
Salazar D, Lokvam J, Mesones I, Pilco MV, Zuñiga JMA, De Valpine P, Fine PVA. 2018. Origin and maintenance of chemical diversity in a species-rich tropical tree lineage. Nature Ecology & Evolution 2: 983-990.
Sasse J, Martinoia E, Northen T. 2018. Feed your friends: do plant exudates shape the root microbiome? Trends in Plant Science 23: 25-41.
Senior JK, Potts BM, Davies NW, Wooliver RC, Schweitzer JA, Bailey JK, O'Reilly-Wapstra JM. 2016. Phylogeny explains variation in the root chemistry of eucalyptus species. Journal of Chemical Ecology 42: 1086-1097.
Smith SA, Brown JW. 2018. Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany 105: 302-314.
Smolders AJP, Vergeer LHT, Van der Velde G, Roelofs JGM. 2000. Phenolic contents of submerged, emergent and floating leaves of aquatic and semi-aquatic macrophyte species: why do they differ? Oikos 91: 307-310.
Soudzilovskaia NA, Elumeeva TG, Onipchenko VG, Shidakov II, Salpagarova FS, Khubiev AB, Tekeev DK, Cornelissen JHC. 2013. Functional traits predict relationship between plant abundance dynamic and long-term climate warming. Proceedings of the National Academy of Sciences, USA 110: 18180-18184.
Steinauer K, Chatzinotas A, Eisenhauer N. 2016. Root exudate cocktails: the link between plant diversity and soil microorganisms? Ecology and Evolution 6: 7387-7396.
Strehmel N, Böttcher C, Schmidt S, Scheel D. 2014. Profiling of secondary metabolites in root exudates of Arabidopsis thaliana. Phytochemistry 108: 35-46.
Thorpe AS, Aschehoug ET, Atwater DZ, Callaway RM. 2011. Interactions among plants and evolution. Journal of Ecology 99: 729-740.
Tkacz A, Bestion E, Bo Z, Hortala M, Poole PS. 2020. Influence of plant fraction, soil, and plant species on microbiota: a multikingdom comparison. mBio 11: e02785-19.
Valverde-Barrantes OJ, Freschet GT, Roumet C, Blackwood CB. 2017. A worldview of root traits: the influence of ancestry, growth form, climate and mycorrhizal association on the functional trait variation of fine-root tissues in seed plants. New Phytologist 215: 1562-1573.
Vranova V, Rejsek K, Skene KR, Janous D, Formanek P. 2013. Methods of collection of plant root exudates in relation to plant metabolism and purpose: a review. Journal of Plant Nutrition and Soil Science 176: 175-199.
de Vries FT, Williams A, Stringer F, Willcocks R, McEwing R, Langridge H, Straathof AL. 2019. Changes in root-exudate-induced respiration reveal a novel mechanism through which drought affects ecosystem carbon cycling. New Phytologist 224: 132-145.
Walker TWN, Alexander JM, Allard PM, Baines O, Baldy V, Bardgett RD, Capdevila P, Coley PD, David B, Defossez E et al. 2022. Functional Traits 2.0: The power of the metabolome for ecology. Journal of Ecology 110: 4-20.
Wang R, Wang Q, Zhao N, Xu Z, Zhu X, Jiao C, Yu G, He N. 2018. Different phylogenetic and environmental controls of first-order root morphological and nutrient traits: evidence of multidimensional root traits. Functional Ecology 32: 29-39.
Weemstra M, Kuyper TW, Sterck FJ, Umaña MN. 2022. Incorporating belowground traits: avenues towards a whole-tree perspective on performance. Oikos 1: e08827.
Weigelt A, Mommer L, Andraczek K, Iversen CM, Bergmann J, Bruelheide H, Fan Y, Freschet GT, Guerrero-Ramírez NR, Kattge J et al. 2021. An integrated framework of plant form and function: the belowground perspective. New Phytologist 232: 42-59.
Williams A, Langridge H, Straathof AL, Fox G, Muhammadali H, Hollywood KA, Xu Y, Goodacre R, de Vries FT. 2021. Comparing root exudate collection techniques: an improved hybrid method. Soil Biology and Biochemistry 161: 108391.
Williams A, Langridge H, Straathof AL, Muhamadali H, Hollywood KA, Goodacre R, de Vries FT. 2022. Root functional traits explain root exudation rate and composition across a range of grassland species. Journal of Ecology 110: 21-33.
Wright IJ, Westoby M, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Diemer M, Wright IJ, Reich PB, Ackerly DD et al. 2004. The worldwide leaf economics spectrum. Nature 428: 821-827.
Wurst S, Ohgushi T. 2015. Do plant- and soil-mediated legacy effects impact future biotic interactions? Functional Ecology 29: 1373-1382.
Yahara H, Tanikawa N, Okamoto M, Makita N. 2019. Characterizing fine-root traits by species phylogeny and microbial symbiosis in 11 co-existing woody species. Oecologia 191: 983-993.
in ‘t Zandt D, Fritz C, Wichern F. 2018. In the land of plenty: catch crops trigger nitrogen uptake by soil microorganisms. Plant and Soil 423: 549-562.
Zelený D, Chytrý M. 2019. Ecological specialization indices for species of the Czech flora. Preslia 91: 93-116.