R-LOOPs on Short Tandem Repeat Expansion Disorders in Neurodegenerative Diseases.


Journal

Molecular neurobiology
ISSN: 1559-1182
Titre abrégé: Mol Neurobiol
Pays: United States
ID NLM: 8900963

Informations de publication

Date de publication:
Dec 2023
Historique:
received: 16 05 2023
accepted: 24 07 2023
medline: 21 11 2023
pubmed: 4 8 2023
entrez: 4 8 2023
Statut: ppublish

Résumé

Expansions of short tandem repeats (STRs) have been found to be present in more than 50 diseases and have a close connection with neurodegenerative diseases. Transcriptional silencing and R-LOOP formation, RNA-mediated sequestration of RNA-binding proteins (RBPs), gain-of-function (GOF) proteins containing expanded repeats, and repeat-associated non-AUG (RAN) translation of toxic repeat peptides are some potential molecular mechanisms underlying STR expansion disorders. R-LOOP, a byproduct of transcription, is a three-stranded nucleic acid structure with abnormal accumulation that participates in the pathogenesis of STR expansion disorders by inducing DNA damage and genome instability. R-LOOPs can engender a series of DNA damage, such as DNA double-strand breaks (DSBs), single-strand breaks (SSBs), DNA recombination, or mutations in the DNA replication, transcription, or repair processes. In this review, we provide an in-depth discussion of recent advancements in R-LOOP and systematically elaborate on its genetic destabilizing effects in several neurodegenerative diseases. These molecular mechanisms will provide novel targets for drug design and therapeutic upgrading of these devastating diseases.

Identifiants

pubmed: 37540313
doi: 10.1007/s12035-023-03531-4
pii: 10.1007/s12035-023-03531-4
doi:

Substances chimiques

DNA 9007-49-2

Types de publication

Journal Article Review

Langues

eng

Sous-ensembles de citation

IM

Pagination

7185-7195

Subventions

Organisme : Excellent Youth Foundation of Hunan Province
ID : 2023JJ10098
Organisme : National Natural Science Foundation of China
ID : 82071437
Organisme : Natural Science Foundation of Hunan Province
ID : 2021JJ3115
Organisme : National Key Research and Development Program of China
ID : 2021YFC2501200
Organisme : the Project Program of National Clinical Research Center for Geriatric Disorders (Xiangya Hospital)
ID : 2021KFJJ10

Informations de copyright

© 2023. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Medina A, Mahjoub Y, Shaver L, Pringsheim T (2022) Prevalence and incidence of Huntington’s disease: an updated systematic review and meta-analysis. Mov Disord Off J Mov Disord Soc 37:2327–2335. https://doi.org/10.1002/mds.29228
doi: 10.1002/mds.29228
Ruano L, Melo C, Silva MC, Coutinho P (2014) The global epidemiology of hereditary ataxia and spastic paraplegia: a systematic review of prevalence studies. Neuroepidemiology 42:174–183. https://doi.org/10.1159/000358801
doi: 10.1159/000358801 pubmed: 24603320
Stevanovski I, Chintalaphani SR, Gamaarachchi H, Ferguson JM, Pineda SS, Scriba CK, Tchan M, Fung V et al (2022) Comprehensive genetic diagnosis of tandem repeat expansion disorders with programmable targeted nanopore sequencing. Sci Adv 8:eabm5386. https://doi.org/10.1126/sciadv.abm5386
doi: 10.1126/sciadv.abm5386 pubmed: 35245110 pmcid: 8896783
Talbott EO, Malek AM, Lacomis D (2016) The epidemiology of amyotrophic lateral sclerosis. Handb Clin Neurol 138:225–238. https://doi.org/10.1016/B978-0-12-802973-2.00013-6
doi: 10.1016/B978-0-12-802973-2.00013-6 pubmed: 27637961
Farg MA, Konopka A, Soo KY, Ito D, Atkin JD (2017) The DNA damage response (DDR) is induced by the C9orf72 repeat expansion in amyotrophic lateral sclerosis. Hum Mol Genet 26:2882–2896. https://doi.org/10.1093/hmg/ddx170
doi: 10.1093/hmg/ddx170 pubmed: 28481984
Malik I, Kelley CP, Wang ET, Todd PK (2021) Molecular mechanisms underlying nucleotide repeat expansion disorders. Nat Rev Mol Cell Biol 22:589–607. https://doi.org/10.1038/s41580-021-00382-6
doi: 10.1038/s41580-021-00382-6 pubmed: 34140671 pmcid: 9612635
Kim A, Wang GG (2021) R-loop and its functions at the regulatory interfaces between transcription and (epi)genome. Biochim Biophys Acta Gene Regul Mech 1864:194750. https://doi.org/10.1016/j.bbagrm.2021.194750
doi: 10.1016/j.bbagrm.2021.194750 pubmed: 34461314 pmcid: 8627470
Niehrs C, Luke B (2020) Regulatory R-loops as facilitators of gene expression and genome stability. Nat Rev Mol Cell Biol 21:167–178. https://doi.org/10.1038/s41580-019-0206-3
doi: 10.1038/s41580-019-0206-3 pubmed: 32005969 pmcid: 7116639
Richard P, Manley JL (2017) R loops and links to human disease. J Mol Biol 429:3168–3180. https://doi.org/10.1016/j.jmb.2016.08.031
doi: 10.1016/j.jmb.2016.08.031 pubmed: 27600412
Sanz LA, Hartono SR, Lim YW, Steyaert S, Rajpurkar A, Ginno PA, Xu X, Chédin F (2016) Prevalent, dynamic, and conserved R-loop structures associate with specific epigenomic signatures in mammals. Mol Cell 63:167–178. https://doi.org/10.1016/j.molcel.2016.05.032
doi: 10.1016/j.molcel.2016.05.032 pubmed: 27373332 pmcid: 4955522
García-Muse T, Aguilera A (2019) R loops: from physiological to pathological roles. Cell 179:604–618. https://doi.org/10.1016/j.cell.2019.08.055
doi: 10.1016/j.cell.2019.08.055 pubmed: 31607512
Groh M, Lufino MMP, Wade-Martins R, Gromak N (2014) R-loops associated with triplet repeat expansions promote gene silencing in Friedreich ataxia and fragile X syndrome. PLoS Genet 10:e1004318. https://doi.org/10.1371/journal.pgen.1004318
doi: 10.1371/journal.pgen.1004318 pubmed: 24787137 pmcid: 4006715
Kannan A, Cuartas J, Gangwani P, Branzei D, Gangwani L (2022) Mutation in senataxin alters the mechanism of R-loop resolution in amyotrophic lateral sclerosis 4. Brain J Neurol 145:3072–3094. https://doi.org/10.1093/brain/awab464
doi: 10.1093/brain/awab464
Reddy K, Tam M, Bowater RP, Barber M, Tomlinson M, Nichol Edamura K, Wang Y-H, Pearson CE (2011) Determinants of R-loop formation at convergent bidirectionally transcribed trinucleotide repeats. Nucleic Acids Res 39:1749–1762. https://doi.org/10.1093/nar/gkq935
doi: 10.1093/nar/gkq935 pubmed: 21051337
Bustos BI, Billingsley K, Blauwendraat C, Gibbs JR, Gan-Or Z, Krainc D, Singleton AB, Lubbe SJ (2023) Genome-wide contribution of common short-tandem repeats to Parkinson’s disease genetic risk. Brain J Neurol 146:65–74. https://doi.org/10.1093/brain/awac301
doi: 10.1093/brain/awac301
Chédin F (2016) Nascent connections: R-loops and chromatin patterning. Trends Genet TIG 32:828–838. https://doi.org/10.1016/j.tig.2016.10.002
doi: 10.1016/j.tig.2016.10.002 pubmed: 27793359
Aguilera A, García-Muse T (2012) R loops: from transcription byproducts to threats to genome stability. Mol Cell 46:115–124. https://doi.org/10.1016/j.molcel.2012.04.009
doi: 10.1016/j.molcel.2012.04.009 pubmed: 22541554
Pan X, Jiang N, Chen X, Zhou X, Ding L, Duan F (2014) R-loop structure: the formation and the effects on genomic stability. Yi Chuan Hered 36:1185–1194. https://doi.org/10.3724/SP.J.1005.2014.1185
doi: 10.3724/SP.J.1005.2014.1185
Rinaldi C, Pizzul P, Longhese MP, Bonetti D (2020) Sensing R-loop-associated DNA damage to safeguard genome stability. Front Cell Dev Biol 8:618157. https://doi.org/10.3389/fcell.2020.618157
doi: 10.3389/fcell.2020.618157 pubmed: 33505970
Petermann E, Lan L, Zou L (2022) Sources, resolution and physiological relevance of R-loops and RNA-DNA hybrids. Nat Rev Mol Cell Biol 23:521–540. https://doi.org/10.1038/s41580-022-00474-x
doi: 10.1038/s41580-022-00474-x pubmed: 35459910
Lockhart A, Pires VB, Bento F, Kellner V, Luke-Glaser S, Yakoub G, Ulrich HD, Luke B (2019) RNase H1 and H2 are differentially regulated to process RNA-DNA hybrids. Cell Rep 29:2890-2900.e5. https://doi.org/10.1016/j.celrep.2019.10.108
doi: 10.1016/j.celrep.2019.10.108 pubmed: 31775053
Manzo SG, Hartono SR, Sanz LA, Marinello J, De Biasi S, Cossarizza A, Capranico G, Chedin F (2018) DNA topoisomerase I differentially modulates R-loops across the human genome. Genome Biol 19:100. https://doi.org/10.1186/s13059-018-1478-1
doi: 10.1186/s13059-018-1478-1 pubmed: 30060749 pmcid: 6066927
Ginno PA, Lott PL, Christensen HC, Korf I, Chédin F (2012) R-loop formation is a distinctive characteristic of unmethylated human CpG island promoters. Mol Cell 45:814–825. https://doi.org/10.1016/j.molcel.2012.01.017
doi: 10.1016/j.molcel.2012.01.017 pubmed: 22387027 pmcid: 3319272
Chen L, Chen J-Y, Zhang X, Gu Y, Xiao R, Shao C, Tang P, Qian H et al (2017) R-ChIP using inactive RNase H reveals dynamic coupling of R-loops with transcriptional pausing at gene promoters. Mol Cell 68:745-757.e5. https://doi.org/10.1016/j.molcel.2017.10.008
doi: 10.1016/j.molcel.2017.10.008 pubmed: 29104020 pmcid: 5957070
García-Muse T, Aguilera A (2016) Transcription-replication conflicts: how they occur and how they are resolved. Nat Rev Mol Cell Biol 17:553–563. https://doi.org/10.1038/nrm.2016.88
doi: 10.1038/nrm.2016.88 pubmed: 27435505
Crossley MP, Bocek M, Cimprich KA (2019) R-Loops as cellular regulators and genomic threats. Mol Cell 73:398–411. https://doi.org/10.1016/j.molcel.2019.01.024
doi: 10.1016/j.molcel.2019.01.024 pubmed: 30735654 pmcid: 6402819
Hamperl S, Bocek MJ, Saldivar JC, Swigut T, Cimprich KA (2017) Transcription-replication conflict orientation modulates R-loop levels and activates distinct DNA damage responses. Cell 170:774-786.e19. https://doi.org/10.1016/j.cell.2017.07.043
doi: 10.1016/j.cell.2017.07.043 pubmed: 28802045 pmcid: 5570545
Jones L, Houlden H, Tabrizi SJ (2017) DNA repair in the trinucleotide repeat disorders. Lancet Neurol 16:88–96. https://doi.org/10.1016/S1474-4422(16)30350-7
doi: 10.1016/S1474-4422(16)30350-7 pubmed: 27979358
Srivatsan A, Tehranchi A, MacAlpine DM, Wang JD (2010) Co-orientation of replication and transcription preserves genome integrity. PLoS Genet 6:e1000810. https://doi.org/10.1371/journal.pgen.1000810
doi: 10.1371/journal.pgen.1000810 pubmed: 20090829 pmcid: 2797598
Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16:2–9. https://doi.org/10.1038/ncb2897
doi: 10.1038/ncb2897 pubmed: 24366029 pmcid: 4354890
Magdalou I, Lopez BS, Pasero P, Lambert SAE (2014) The causes of replication stress and their consequences on genome stability and cell fate. Semin Cell Dev Biol 30:154–164. https://doi.org/10.1016/j.semcdb.2014.04.035
doi: 10.1016/j.semcdb.2014.04.035 pubmed: 24818779
Saponaro M, Kantidakis T, Mitter R, Kelly GP, Heron M, Williams H, Söding J, Stewart A et al (2014) RECQL5 controls transcript elongation and suppresses genome instability associated with transcription stress. Cell 157:1037–1049. https://doi.org/10.1016/j.cell.2014.03.048
doi: 10.1016/j.cell.2014.03.048 pubmed: 24836610 pmcid: 4032574
Groh M, Silva LM, Gromak N (2014) Mechanisms of transcriptional dysregulation in repeat expansion disorders. Biochem Soc Trans 42:1123–1128. https://doi.org/10.1042/BST20140049
doi: 10.1042/BST20140049 pubmed: 25110013
Lans H, Hoeijmakers JHJ, Vermeulen W, Marteijn JA (2019) The DNA damage response to transcription stress. Nat Rev Mol Cell Biol 20:766–784. https://doi.org/10.1038/s41580-019-0169-4
doi: 10.1038/s41580-019-0169-4 pubmed: 31558824
Skourti-Stathaki K, Kamieniarz-Gdula K, Proudfoot NJ (2014) R-loops induce repressive chromatin marks over mammalian gene terminators. Nature 516:436–439. https://doi.org/10.1038/nature13787
doi: 10.1038/nature13787 pubmed: 25296254 pmcid: 4272244
Ginno PA, Lim YW, Lott PL, Korf I, Chédin F (2013) GC Skew at the 5′ and 3′ ends of human genes links R-loop formation to epigenetic regulation and transcription termination. Genome Res 23:1590–1600. https://doi.org/10.1101/gr.158436.113
doi: 10.1101/gr.158436.113 pubmed: 23868195 pmcid: 3787257
Xi Z, Zinman L, Moreno D, Schymick J, Liang Y, Sato C, Zheng Y, Ghani M et al (2013) Hypermethylation of the CpG island near the G4C2 repeat in ALS with a C9orf72 expansion. Am J Hum Genet 92:981–989. https://doi.org/10.1016/j.ajhg.2013.04.017
doi: 10.1016/j.ajhg.2013.04.017 pubmed: 23731538 pmcid: 3675239
Kubicek S, O’Sullivan RJ, August EM, Hickey ER, Zhang Q, Teodoro ML, Rea S, Mechtler K et al (2007) Reversal of H3K9me2 by a small-molecule inhibitor for the G9a histone methyltransferase. Mol Cell 25:473–481. https://doi.org/10.1016/j.molcel.2007.01.017
doi: 10.1016/j.molcel.2007.01.017 pubmed: 17289593
Sollier J, Stork CT, García-Rubio ML, Paulsen RD, Aguilera A, Cimprich KA (2014) Transcription-coupled nucleotide excision repair factors promote R-loop-induced genome instability. Mol Cell 56:777–785. https://doi.org/10.1016/j.molcel.2014.10.020
doi: 10.1016/j.molcel.2014.10.020 pubmed: 25435140 pmcid: 4272638
Ross CA, Poirier MA (2004) Protein aggregation and neurodegenerative disease. Nat Med 10(Suppl):S10-17. https://doi.org/10.1038/nm1066
doi: 10.1038/nm1066 pubmed: 15272267
Lin Y, Dent SYR, Wilson JH, Wells RD, Napierala M (2010) R Loops stimulate genetic instability of CTG.CAG repeats. Proc Natl Acad Sci USA 107:692–697. https://doi.org/10.1073/pnas.0909740107
doi: 10.1073/pnas.0909740107 pubmed: 20080737
Reddy K, Schmidt MHM, Geist JM, Thakkar NP, Panigrahi GB, Wang Y-H, Pearson CE (2014) Processing of double-R-loops in (CAG)·(CTG) and C9orf72 (GGGGCC)·(GGCCCC) repeats causes instability. Nucleic Acids Res 42:10473–10487. https://doi.org/10.1093/nar/gku658
doi: 10.1093/nar/gku658 pubmed: 25147206 pmcid: 4176329
Guler GD, Rosenwaks Z, Gerhardt J (2018) Human DNA helicase B as a candidate for unwinding secondary CGG repeat structures at the fragile X mental retardation gene. Front Mol Neurosci 11:138. https://doi.org/10.3389/fnmol.2018.00138
doi: 10.3389/fnmol.2018.00138 pubmed: 29760651 pmcid: 5936766
Voineagu I, Surka CF, Shishkin AA, Krasilnikova MM, Mirkin SM (2009) Replisome stalling and stabilization at CGG repeats, which are responsible for chromosomal fragility. Nat Struct Mol Biol 16:226–228. https://doi.org/10.1038/nsmb.1527
doi: 10.1038/nsmb.1527 pubmed: 19136957 pmcid: 2837601
Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377:162–172. https://doi.org/10.1056/NEJMra1603471
doi: 10.1056/NEJMra1603471 pubmed: 28700839
Feldman EL, Goutman SA, Petri S, Mazzini L, Savelieff MG, Shaw PJ, Sobue G (2022) Amyotrophic lateral sclerosis. Lancet Lond Engl 400:1363–1380. https://doi.org/10.1016/S0140-6736(22)01272-7
doi: 10.1016/S0140-6736(22)01272-7
van Es MA, Hardiman O, Chio A, Al-Chalabi A, Pasterkamp RJ, Veldink JH, van den Berg LH (2017) Amyotrophic lateral sclerosis. Lancet Lond Engl 390:2084–2098. https://doi.org/10.1016/S0140-6736(17)31287-4
doi: 10.1016/S0140-6736(17)31287-4
Taylor JP, Brown RHJ, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539:197–206. https://doi.org/10.1038/nature20413
doi: 10.1038/nature20413 pubmed: 27830784 pmcid: 5585017
Jaworska E, Kozlowska E, Switonski PM, Krzyzosiak WJ (2016) Modeling simple repeat expansion diseases with IPSC technology. Cell Mol Life Sci CMLS 73:4085–4100. https://doi.org/10.1007/s00018-016-2284-0
doi: 10.1007/s00018-016-2284-0 pubmed: 27261369
Gendron TF, Petrucelli L (2018) Disease mechanisms of C9ORF72 repeat expansions. Cold Spring Harb Perspect Med 8. https://doi.org/10.1101/cshperspect.a024224
Wang J, Haeusler AR, Simko EAJ (2015) Emerging role of RNA•DNA hybrids in C9orf72-linked neurodegeneration. Cell Cycle Georget Tex 14:526–532. https://doi.org/10.1080/15384101.2014.995490
doi: 10.1080/15384101.2014.995490
Haeusler AR, Donnelly CJ, Periz G, Simko EAJ, Shaw PG, Kim M-S, Maragakis NJ, Troncoso JC et al (2014) C9orf72 nucleotide repeat structures initiate molecular cascades of disease. Nature 507:195–200. https://doi.org/10.1038/nature13124
doi: 10.1038/nature13124 pubmed: 24598541 pmcid: 4046618
Xi Z, Rainero I, Rubino E, Pinessi L, Bruni AC, Maletta RG, Nacmias B, Sorbi S et al (2014) Hypermethylation of the CpG-Island near the C9orf72 G
doi: 10.1093/hmg/ddu279 pubmed: 24908669
Russ J, Liu EY, Wu K, Neal D, Suh E, Irwin DJ, McMillan CT, Harms MB et al (2015) Hypermethylation of repeat expanded C9orf72 is a clinical and molecular disease modifier. Acta Neuropathol (Berl) 129:39–52. https://doi.org/10.1007/s00401-014-1365-0
doi: 10.1007/s00401-014-1365-0 pubmed: 25388784
Belzil VV, Bauer PO, Prudencio M, Gendron TF, Stetler CT, Yan IK, Pregent L, Daughrity L et al (2013) Reduced C9orf72 gene expression in C9FTD/ALS is caused by histone trimethylation, an epigenetic event detectable in blood. Acta Neuropathol (Berl) 126:895–905. https://doi.org/10.1007/s00401-013-1199-1
doi: 10.1007/s00401-013-1199-1 pubmed: 24166615
Vakoc CR, Mandat SA, Olenchock BA, Blobel GA (2005) Histone H3 lysine 9 methylation and HP1gamma are associated with transcription elongation through mammalian chromatin. Mol Cell 19:381–391. https://doi.org/10.1016/j.molcel.2005.06.011
doi: 10.1016/j.molcel.2005.06.011 pubmed: 16061184
Cohen S, Puget N, Lin Y-L, Clouaire T, Aguirrebengoa M, Rocher V, Pasero P, Canitrot Y et al (2018) Senataxin resolves RNA:DNA hybrids forming at DNA double-strand breaks to prevent translocations. Nat Commun 9:533. https://doi.org/10.1038/s41467-018-02894-w
doi: 10.1038/s41467-018-02894-w pubmed: 29416069 pmcid: 5803260
Becherel OJ, Yeo AJ, Stellati A, Heng EYH, Luff J, Suraweera AM, Woods R, Fleming J et al (2013) Senataxin plays an essential role with DNA damage response proteins in meiotic recombination and gene silencing. PLoS Genet 9:e1003435. https://doi.org/10.1371/journal.pgen.1003435
doi: 10.1371/journal.pgen.1003435 pubmed: 23593030 pmcid: 3623790
Rawal CC, Zardoni L, Di Terlizzi M, Galati E, Brambati A, Lazzaro F, Liberi G, Pellicioli A (2020) Senataxin ortholog Sen1 limits DNA:RNA hybrid accumulation at DNA double-strand breaks to control end resection and repair fidelity. Cell Rep 31:107603. https://doi.org/10.1016/j.celrep.2020.107603
doi: 10.1016/j.celrep.2020.107603 pubmed: 32375052
Walker C, Herranz-Martin S, Karyka E, Liao C, Lewis K, Elsayed W, Lukashchuk V, Chiang S-C et al (2017) C9orf72 expansion disrupts ATM-mediated chromosomal break repair. Nat Neurosci 20:1225–1235. https://doi.org/10.1038/nn.4604
doi: 10.1038/nn.4604 pubmed: 28714954 pmcid: 5578434
Moreira M-C, Klur S, Watanabe M, Németh AH, Le Ber I, Moniz J-C, Tranchant C, Aubourg P et al (2004) Senataxin, the ortholog of a yeast RNA helicase, is mutant in ataxia-ocular apraxia 2. Nat Genet 36:225–227. https://doi.org/10.1038/ng1303
doi: 10.1038/ng1303 pubmed: 14770181
Chen Y-Z, Bennett CL, Huynh HM, Blair IP, Puls I, Irobi J, Dierick I, Abel A et al (2004) DNA/RNA helicase gene mutations in a form of juvenile amyotrophic lateral sclerosis (ALS4). Am J Hum Genet 74:1128–1135. https://doi.org/10.1086/421054
doi: 10.1086/421054 pubmed: 15106121 pmcid: 1182077
Verkerk AJ, Pieretti M, Sutcliffe JS, Fu YH, Kuhl DP, Pizzuti A, Reiner O, Richards S et al (1991) Identification of a Gene (FMR-1) Containing a CGG repeat coincident with a breakpoint cluster region exhibiting length variation in fragile X syndrome. Cell 65:905–914. https://doi.org/10.1016/0092-8674(91)90397-h
doi: 10.1016/0092-8674(91)90397-h pubmed: 1710175
Cabal-Herrera AM, Tassanakijpanich N, Salcedo-Arellano MJ, Hagerman RJ (2020) Fragile X-associated tremor/ataxia syndrome (FXTAS): pathophysiology and clinical implications. Int J Mol Sci 21. https://doi.org/10.3390/ijms21124391
Brouwer JR, Willemsen R, Oostra BA (2009) The FMR1 gene and fragile X-associated tremor/ataxia syndrome. Am J Med Genet Part B Neuropsychiatr Genet Off Publ Int Soc Psychiatr Genet 150B:782–798. https://doi.org/10.1002/ajmg.b.30910
doi: 10.1002/ajmg.b.30910
Sidorov MS, Auerbach BD, Bear MF (2013) Fragile X mental retardation protein and synaptic plasticity. Mol Brain 6:15. https://doi.org/10.1186/1756-6606-6-15
doi: 10.1186/1756-6606-6-15 pubmed: 23566911 pmcid: 3636002
Richter JD, Zhao X (2021) The molecular biology of FMRP: new insights into fragile X syndrome. Nat Rev Neurosci 22:209–222. https://doi.org/10.1038/s41583-021-00432-0
doi: 10.1038/s41583-021-00432-0 pubmed: 33608673 pmcid: 8094212
Hagerman RJ, Berry-Kravis E, Hazlett HC, Bailey DBJ, Moine H, Kooy RF, Tassone F, Gantois I et al (2017) Fragile X syndrome. Nat Rev Dis Primer 3:17065. https://doi.org/10.1038/nrdp.2017.65
doi: 10.1038/nrdp.2017.65
Hagerman RJ, Hagerman P (2016) Fragile X-associated tremor/ataxia syndrome — features, mechanisms and management. Nat Rev Neurol 12:403–412. https://doi.org/10.1038/nrneurol.2016.82
doi: 10.1038/nrneurol.2016.82 pubmed: 27340021
Yousuf A, Ahmed N, Qurashi A (2022) Non-canonical DNA/RNA structures associated with the pathogenesis of fragile X-associated tremor/ataxia syndrome and fragile X syndrome. Front Genet 13:866021. https://doi.org/10.3389/fgene.2022.866021
doi: 10.3389/fgene.2022.866021 pubmed: 36110216 pmcid: 9468596
Kumari D, Usdin K (2014) Polycomb group complexes are recruited to reactivated FMR1 alleles in fragile X syndrome in response to FMR1 transcription. Hum Mol Genet 23:6575–6583. https://doi.org/10.1093/hmg/ddu378
doi: 10.1093/hmg/ddu378 pubmed: 25055869 pmcid: 4240206
Skourti-Stathaki K, Torlai Triglia E, Warburton M, Voigt P, Bird A, Pombo A (2019) R-loops enhance polycomb repression at a subset of developmental regulator genes. Mol Cell 73:930-945.e4. https://doi.org/10.1016/j.molcel.2018.12.016
doi: 10.1016/j.molcel.2018.12.016 pubmed: 30709709 pmcid: 6414425
Loomis EW, Sanz LA, Chédin F, Hagerman PJ (2014) Transcription-associated R-loop formation across the human FMR1 CGG-repeat region. PLoS Genet 10:e1004294. https://doi.org/10.1371/journal.pgen.1004294
doi: 10.1371/journal.pgen.1004294 pubmed: 24743386 pmcid: 3990486
Di Ruscio A, Ebralidze AK, Benoukraf T, Amabile G, Goff LA, Terragni J, Figueroa ME, De Figueiredo Pontes LL et al (2013) DNMT1-interacting RNAs block gene-specific DNA methylation. Nature 503:371–376. https://doi.org/10.1038/nature12598
doi: 10.1038/nature12598 pubmed: 24107992 pmcid: 3870304
Kraan CM, Godler DE, Amor DJ (2019) Epigenetics of fragile X syndrome and fragile X-related disorders. Dev Med Child Neurol 61:121–127. https://doi.org/10.1111/dmcn.13985
doi: 10.1111/dmcn.13985 pubmed: 30084485
Iwahashi CK, Yasui DH, An H-J, Greco CM, Tassone F, Nannen K, Babineau B, Lebrilla CB et al (2006) Protein composition of the intranuclear inclusions of FXTAS. Brain J Neurol 129:256–271. https://doi.org/10.1093/brain/awh650
doi: 10.1093/brain/awh650
Walker FO (2007) Huntington’s disease. Lancet Lond Engl 369:218–228. https://doi.org/10.1016/S0140-6736(07)60111-1
doi: 10.1016/S0140-6736(07)60111-1
Tabrizi SJ, Flower MD, Ross CA, Wild EJ (2020) Huntington disease: new insights into molecular pathogenesis and therapeutic opportunities. Nat Rev Neurol 16:529–546. https://doi.org/10.1038/s41582-020-0389-4
doi: 10.1038/s41582-020-0389-4 pubmed: 32796930
Andrew SE, Goldberg YP, Kremer B, Telenius H, Theilmann J, Adam S, Starr E, Squitieri F et al (1993) The relationship between trinucleotide (CAG) repeat length and clinical features of Huntington’s disease. Nat Genet 4:398–403. https://doi.org/10.1038/ng0893-398
doi: 10.1038/ng0893-398 pubmed: 8401589
Finkbeiner S (2011) Huntington’s Disease. Cold Spring Harb Perspect Biol 3. https://doi.org/10.1101/cshperspect.a007476
Pradhan S, Gao R, Bush K, Zhang N, Wairkar YP, Sarkar PS (2022) Polyglutamine expansion in Huntingtin and mechanism of DNA damage repair defects in Huntington’s disease. Front Cell Neurosci 16:837576. https://doi.org/10.3389/fncel.2022.837576
doi: 10.3389/fncel.2022.837576 pubmed: 35444517 pmcid: 9013776
Gao R, Chakraborty A, Geater C, Pradhan S, Gordon KL, Snowden J, Yuan S, Dickey AS et al (2019) Mutant Huntingtin impairs PNKP and ATXN3, disrupting DNA repair and transcription. eLife 8. https://doi.org/10.7554/eLife.42988
Enokido Y, Tamura T, Ito H, Arumughan A, Komuro A, Shiwaku H, Sone M, Foulle R et al (2010) Mutant Huntingtin impairs Ku70-mediated DNA repair. J Cell Biol 189:425–443. https://doi.org/10.1083/jcb.200905138
doi: 10.1083/jcb.200905138 pubmed: 20439996 pmcid: 2867301
Seeberg E, Eide L, Bjørås M (1995) The base excision repair pathway. Trends Biochem Sci 20:391–397. https://doi.org/10.1016/s0968-0004(00)89086-6
doi: 10.1016/s0968-0004(00)89086-6 pubmed: 8533150
Chatterjee N, Walker GC (2017) Mechanisms of DNA damage, repair, and mutagenesis. Environ Mol Mutagen 58:235–263. https://doi.org/10.1002/em.22087
doi: 10.1002/em.22087 pubmed: 28485537 pmcid: 5474181
Maiuri T, Suart CE, Hung CLK, Graham KJ, Barba Bazan CA, Truant R (2019) DNA damage repair in Huntington’s disease and other neurodegenerative diseases. Neurother J Am Soc Exp Neurother 16:948–956. https://doi.org/10.1007/s13311-019-00768-7
doi: 10.1007/s13311-019-00768-7
Iyer RR, Pluciennik A, Napierala M, Wells RD (2015) DNA triplet repeat expansion and mismatch repair. Annu Rev Biochem 84:199–226. https://doi.org/10.1146/annurev-biochem-060614-034010
doi: 10.1146/annurev-biochem-060614-034010 pubmed: 25580529 pmcid: 4845744
Nakamori M, Panigrahi GB, Lanni S, Gall-Duncan T, Hayakawa H, Tanaka H, Luo J, Otabe T et al (2020) A slipped-CAG DNA-binding small molecule induces trinucleotide-repeat contractions in vivo. Nat Genet 52:146–159. https://doi.org/10.1038/s41588-019-0575-8
doi: 10.1038/s41588-019-0575-8 pubmed: 32060489 pmcid: 7043212
Perego MGL, Taiana M, Bresolin N, Comi GP, Corti S (2019) R-Loops in Motor Neuron Diseases. Mol Neurobiol 56:2579–2589. https://doi.org/10.1007/s12035-018-1246-y
doi: 10.1007/s12035-018-1246-y pubmed: 30047099
Jangi M, Fleet C, Cullen P, Gupta SV, Mekhoubad S, Chiao E, Allaire N, Bennett CF et al (2017) SMN deficiency in severe models of spinal muscular atrophy causes widespread intron retention and DNA damage. Proc Natl Acad Sci U S A 114:E2347–E2356. https://doi.org/10.1073/pnas.1613181114
doi: 10.1073/pnas.1613181114 pubmed: 28270613 pmcid: 5373344
Cuartas J, Gangwani L (2022) R-loop mediated DNA damage and impaired DNA repair in spinal muscular atrophy. Front Cell Neurosci 16:826608. https://doi.org/10.3389/fncel.2022.826608
doi: 10.3389/fncel.2022.826608 pubmed: 35783101 pmcid: 9243258
Ma D, Tan YJ, Ng ASL, Ong HL, Sim W, Lim WK, Teo JX, Ng EYL et al (2020) Association of NOTCH2NLC repeat expansions with Parkinson disease. JAMA Neurol 77:1559–1563. https://doi.org/10.1001/jamaneurol.2020.3023
doi: 10.1001/jamaneurol.2020.3023 pubmed: 32852534
Shi C-H, Fan Y, Yang J, Yuan Y-P, Shen S, Liu F, Mao C-Y, Liu H et al (2021) NOTCH2NLC intermediate-length repeat expansions are associated with Parkinson disease. Ann Neurol 89:182–187. https://doi.org/10.1002/ana.25925
doi: 10.1002/ana.25925 pubmed: 33016348
Klockgether T, Mariotti C, Paulson HL (2019) Spinocerebellar ataxia. Nat Rev Dis Primer 5:24. https://doi.org/10.1038/s41572-019-0074-3
doi: 10.1038/s41572-019-0074-3
Seidel K, Siswanto S, Brunt ERP, den Dunnen W, Korf H-W, Rüb U (2012) Brain pathology of spinocerebellar ataxias. Acta Neuropathol (Berl) 124:1–21. https://doi.org/10.1007/s00401-012-1000-x
doi: 10.1007/s00401-012-1000-x pubmed: 22684686
Dueñas AM, Goold R, Giunti P (2006) Molecular pathogenesis of spinocerebellar ataxias. Brain J Neurol 129:1357–1370. https://doi.org/10.1093/brain/awl081
doi: 10.1093/brain/awl081
Rüb U, Schöls L, Paulson H, Auburger G, Kermer P, Jen JC, Seidel K, Korf H-W et al (2013) Clinical features, neurogenetics and neuropathology of the polyglutamine spinocerebellar ataxias type 1, 2, 3, 6 and 7. Prog Neurobiol 104:38–66. https://doi.org/10.1016/j.pneurobio.2013.01.001
doi: 10.1016/j.pneurobio.2013.01.001 pubmed: 23438480
McLoughlin HS, Moore LR, Paulson HL (2020) Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol Dis 134:104635. https://doi.org/10.1016/j.nbd.2019.104635
doi: 10.1016/j.nbd.2019.104635 pubmed: 31669734
Tian Y, Wang J-L, Huang W, Zeng S, Jiao B, Liu Z, Chen Z, Li Y et al (2019) Expansion of human-specific GGC repeat in neuronal intranuclear inclusion disease-related disorders. Am J Hum Genet 105:166–176. https://doi.org/10.1016/j.ajhg.2019.05.013
doi: 10.1016/j.ajhg.2019.05.013 pubmed: 31178126 pmcid: 6612530
Sun Q-Y, Xu Q, Tian Y, Hu Z-M, Qin L-X, Yang J-X, Huang W, Xue J et al (2020) Expansion of GGC repeat in the human-specific NOTCH2NLC gene is associated with essential tremor. Brain J Neurol 143:222–233. https://doi.org/10.1093/brain/awz372
doi: 10.1093/brain/awz372
Liufu T, Zheng Y, Yu J, Yuan Y, Wang Z, Deng J, Hong D (2022) The polyG diseases: a new disease entity. Acta Neuropathol Commun 10:79. https://doi.org/10.1186/s40478-022-01383-y
doi: 10.1186/s40478-022-01383-y pubmed: 35642014 pmcid: 9153130
Oh J, Jia T, Xu J, Chong J, Dervan PB, Wang D (2022) RNA polymerase II trapped on a molecular treadmill: structural basis of persistent transcriptional arrest by a minor groove DNA binder. Proc Natl Acad Sci USA 119. https://doi.org/10.1073/pnas.2114065119
Escudé C, Nguyen CH, Kukreti S, Janin Y, Sun JS, Bisagni E, Garestier T, Hélène C (1998) Rational design of a triple helix-specific intercalating ligand. Proc Natl Acad Sci U S A 95:3591–3596. https://doi.org/10.1073/pnas.95.7.3591
doi: 10.1073/pnas.95.7.3591 pubmed: 9520410 pmcid: 19880
Arya DP (2011) New approaches toward recognition of nucleic acid triple helices. Acc Chem Res 44:134–146. https://doi.org/10.1021/ar100113q
doi: 10.1021/ar100113q pubmed: 21073199
Shaw NN, Arya DP (2008) Recognition of the unique structure of DNA:RNA hybrids. Biochimie 90:1026–1039. https://doi.org/10.1016/j.biochi.2008.04.011
doi: 10.1016/j.biochi.2008.04.011 pubmed: 18486626
Groh M, Gromak N (2014) Out of balance: R-loops in human disease. PLoS Genet 10:e1004630. https://doi.org/10.1371/journal.pgen.1004630
doi: 10.1371/journal.pgen.1004630 pubmed: 25233079 pmcid: 4169248
Barbieri CM, Li T-K, Guo S, Wang G, Shallop AJ, Pan W, Yang G, Gaffney BL (2003) Aminoglycoside complexation with a DNA.RNA hybrid duplex: the thermodynamics of recognition and inhibition of RNA processing enzymes. J Am Chem Soc 125:6469–6477. https://doi.org/10.1021/ja021371d
doi: 10.1021/ja021371d pubmed: 12785787
Shaw NN, Xi H, Arya DP (2008) Molecular recognition of a DNA:RNA hybrid: sub-nanomolar binding by a neomycin-methidium conjugate. Bioorg Med Chem Lett 18:4142–4145. https://doi.org/10.1016/j.bmcl.2008.05.090
doi: 10.1016/j.bmcl.2008.05.090 pubmed: 18573660
Lee H-G, Imaichi S, Kraeutler E, Aguilar R, Lee Y-W, Sheridan SD, Lee JT (2023) Site-specific R-loops induce CGG repeat contraction and fragile X gene reactivation. Cell 186:2593-2609.e18. https://doi.org/10.1016/j.cell.2023.04.035
doi: 10.1016/j.cell.2023.04.035 pubmed: 37209683
Hensel N, Detering NT, Walter LM, Claus P (2020) Resolution of pathogenic R-loops rescues motor neuron degeneration in spinal muscular atrophy. Brain J Neurol 143:2–5. https://doi.org/10.1093/brain/awz394
doi: 10.1093/brain/awz394
Jauregui-Lozano J, Escobedo S, Easton A, Lanman NA, Weake VM, Hall H (2022) Proper control of R-loop homeostasis is required for maintenance of gene expression and neuronal function during aging. Aging Cell 21:e13554. https://doi.org/10.1111/acel.13554
doi: 10.1111/acel.13554 pubmed: 35048512 pmcid: 8844117
Hashizume A, Fischbeck KH, Pennuto M, Fratta P, Katsuno M (2020) Disease mechanism, biomarker and therapeutics for spinal and bulbar muscular atrophy (SBMA). J Neurol Neurosurg Psychiatry 91:1085–1091. https://doi.org/10.1136/jnnp-2020-322949
doi: 10.1136/jnnp-2020-322949 pubmed: 32934110

Auteurs

Yiting Wu (Y)

Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.

Tingwei Song (T)

Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.

Qian Xu (Q)

Department of Neurology, Xiangya Hospital, Central South University, Changsha, China. xyxuqian2015@163.com.
National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Changsha, China. xyxuqian2015@163.com.
Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China. xyxuqian2015@163.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH