Anaerobic hydrolysis of recalcitrant tetramethylammonium from semiconductor wastewater: Performance and mechanisms.

Advanced oxidation Anaerobic hydrolysis Industrial wastewater Metagenomics Tetramethylammonium hydroxide

Journal

Journal of hazardous materials
ISSN: 1873-3336
Titre abrégé: J Hazard Mater
Pays: Netherlands
ID NLM: 9422688

Informations de publication

Date de publication:
05 10 2023
Historique:
received: 23 05 2023
revised: 23 07 2023
accepted: 04 08 2023
medline: 31 8 2023
pubmed: 12 8 2023
entrez: 11 8 2023
Statut: ppublish

Résumé

The treatment of tetramethylammonium hydroxide (TMAH)-bearing wastewater, generated in the electronic and semiconductor industries, raises significant concerns due to the neurotoxic, recalcitrant, and bio-inhibiting effects of TMAH. In this study, we proposed the use of an anaerobic hydrolysis bioreactor (AHBR) for TMAH removal, achieving a high removal efficiency of approximately 85%, which greatly surpassed the performance of widely-used advanced oxidation processes (AOPs). Density functional theory calculations indicated that the unexpectedly poor efficiency (5.8-8.0%) of selected AOPs can be attributed to the electrostatic repulsion between oxidants and the tightly bound electrons of TMAH. Metagenomic analyses of the AHBR revealed that Proteobacteria and Euryarchaeota played a dominant role in the transformation of TMAH through processes such as methyl transfer, methanogenesis, and acetyl-coenzyme A synthesis, utilizing methyl-tetrahydromethanopterin as a substrate. Moreover, several potential functional genes (e.g., mprF, basS, bcrB, sugE) related to TMAH resistance have been identified. Molecular docking studies between five selected proteins and tetramethylammonium further provided evidence supporting the roles of these potential functional genes. This study demonstrates the superiority of AHBR as a pretreatment technology compared to several widely-researched AOPs, paving the way for the proper design of treatment processes to abate TMAH in semiconductor wastewater.

Identifiants

pubmed: 37567140
pii: S0304-3894(23)01522-4
doi: 10.1016/j.jhazmat.2023.132239
pii:
doi:

Substances chimiques

Wastewater 0
tetramethylammonium H0W55235FC
Quaternary Ammonium Compounds 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

132239

Informations de copyright

Copyright © 2023 Elsevier B.V. All rights reserved.

Déclaration de conflit d'intérêts

Declaration of Competing Interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Auteurs

Zhouyan Li (Z)

State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Lehui Ren (L)

State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Xueye Wang (X)

State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Mei Chen (M)

MOE Key Laboratory of Pollution Processes and Environmental Criteria/Tianjin Key Laboratory of Environmental Remediation and Pollution Control/College of Environmental Science and Engineering, Nankai University, No. 38 Tongyan Road, Jinnan District, Tianjin 300350, China.

Tianlin Wang (T)

State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Ruobin Dai (R)

State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.

Zhiwei Wang (Z)

State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, Tongji Advanced Membrane Technology Center, School of Environmental Science and Engineering, Tongji University, Shanghai 200092, China. Electronic address: zwwang@tongji.edu.cn.

Articles similaires

Animals Hemiptera Insect Proteins Phylogeny Insecticides
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics
Animals Osteoarthritis Rats NF-kappa B Male

Classifications MeSH