Magnetic-assisted exciton-plasmon interactions modulated Bi
Bi2S3 NRs@MoS2 NSs heterojunction
Exciton-plasma interaction
Profenofos
Split-type photoelectrochemical sensor
Journal
Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782
Informations de publication
Date de publication:
14 08 2023
14 08 2023
Historique:
received:
04
05
2023
accepted:
21
07
2023
medline:
15
8
2023
pubmed:
14
8
2023
entrez:
13
8
2023
Statut:
epublish
Résumé
A split-type photoelectrochemical (PEC) sensor was designed for the detection of profenofos (PFF) depending on the magnetic-assisted exciton-plasmon interactions (EPI) between the semiconductor substrate and Au NPs. The core-shell Bi
Identifiants
pubmed: 37574467
doi: 10.1007/s00604-023-05927-4
pii: 10.1007/s00604-023-05927-4
doi:
Substances chimiques
Molybdenum
81AH48963U
profenofos
7J04O7BS4W
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
350Subventions
Organisme : National Natural Science Foundation of China
ID : 22204143
Organisme : Natural Science Foundation of Zhejiang Province
ID : LQ22B050006
Organisme : Natural Science Foundation of Zhejiang Province
ID : LQ21C060003
Organisme : Jinhua Science and Technology Bureau
ID : 2021-3-058
Organisme : Medical and Health Research Project of Zhejiang Province
ID : 2022KY424
Organisme : State Key Laboratory of Analytical Chemistry for Life Science
ID : SKLACLS2213
Organisme : Research Fund of Jinhua Municipal Central Hospital
ID : JY2021-5-03
Organisme : the Open Fund Project of Key Laboratory of Watershed Surface Process and Ecological Security of Zhejiang Normal University
ID : KF-2022-14
Organisme : Zhejiang Public Welfare Technology Application Research Project
ID : LTGC23B070001
Informations de copyright
© 2023. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.
Références
Pundir CS, Malik A, Preety (2019) Bio-sensing of organophosphorus pesticides: a review. Biosens Bioelectron 140:111348. https://doi.org/10.1016/j.bios.2019.111348
doi: 10.1016/j.bios.2019.111348
pubmed: 31153016
Chen S-H, Xiao X-Y, Li P-H, Li Y-X, Yang M, Guo Z, Huang X-J (2020) A direct Z-scheme ZnS/Co
doi: 10.1039/C9EN01265F
Fang L, Shi Q, Xu L, Shi T, Wu X, Li QX, Hua R (2020) Enantioselective uptake determines degradation selectivity of chiral profenofos in cupriavidus nantongensis X1T. J Agric Food Chem 68(24):6493–6501. https://doi.org/10.1021/acs.jafc.0c00132
doi: 10.1021/acs.jafc.0c00132
pubmed: 32459959
Kushwaha M, Verma S, Chatterjee S (2016) Profenofos, an acetylcholinesterase-inhibiting organophosphorus pesticide: a short review of its usage, toxicity, and biodegradation. J Environ Qual 45(5):1478–1489. https://doi.org/10.2134/jeq2016.03.0100
doi: 10.2134/jeq2016.03.0100
pubmed: 27695768
Paker NP, Mehmood S, Javed MT, Damalas CA, Rehman F, Chaudhary HJ, Munir MZ, Malik M (2023) Elucidating molecular characterization of chlorpyrifos and profenofos degrading distinct bacterial strains for enhancing seed germination potential of Gossypium arboreum L. Environ Sci Pollut Res 30(16):48120–48137. https://doi.org/10.1007/s11356-023-25343-8
doi: 10.1007/s11356-023-25343-8
Mahajan R, Chatterjee S (2018) A simple HPLC–DAD method for simultaneous detection of two organophosphates, profenofos and fenthion, and validation by soil microcosm experiment. Environ Monit Assess 190(6):327. https://doi.org/10.1007/s10661-018-6710-7
doi: 10.1007/s10661-018-6710-7
pubmed: 29730742
Wani AA, Dar AA, Jan I, Mukhtar M, Sofi KA, Hassan GI, Sofi JA (2022) Dissipation and gas chromatographic method for the determination of profenofos residues in/on green pea and cucumber. Biomed Chromatogr 36(4):e5335. https://doi.org/10.1002/bmc.5335
doi: 10.1002/bmc.5335
pubmed: 35023162
Lu Y, Tan Y, Xiao Y, Li Z, Sheng E, Dai Z (2021) A silver@gold nanoparticle tetrahedron biosensor for multiple pesticides detection based on surface-enhanced Raman scattering. Talanta 234:122585. https://doi.org/10.1016/j.talanta.2021.122585
doi: 10.1016/j.talanta.2021.122585
pubmed: 34364414
Huang J, Xiang Y, Li J, Kong Q, Zhai H, Xu R, Yang F, Sun X, Guo Y (2021) A novel electrochemiluminescence aptasensor based on copper-gold bimetallic nanoparticles and its applications. Biosens Bioelectron 194:113601. https://doi.org/10.1016/j.bios.2021.113601
doi: 10.1016/j.bios.2021.113601
pubmed: 34530372
Fu J, An X, Yao Y, Guo Y, Sun X (2019) Electrochemical aptasensor based on one step co-electrodeposition of aptamer and GO-CuNPs nanocomposite for organophosphorus pesticide detection. Sensors Actuators B Chem 287:503–509. https://doi.org/10.1016/j.snb.2019.02.057
doi: 10.1016/j.snb.2019.02.057
Wang H, Liang D, Xu Y, Liang X, Qiu X, Lin Z (2021) A highly efficient photoelectrochemical sensor for detection of chlorpyrifos based on 2D/2D β-Bi
doi: 10.1039/d0en01243b
Shen Y-Z, Guan J, Ma C, Shu Y, Xu Q, Hu X-Y (2022) Competitive displacement triggering DBP photoelectrochemical aptasensor via cetyltrimethylammonium bromide bridging aptamer and perovskite. Anal Chem 94(3):1742–1751. https://doi.org/10.1021/acs.analchem.1c04348
doi: 10.1021/acs.analchem.1c04348
pubmed: 35026109
Chen Y, Xu L, Yang M, Jia Y, Yan Y, Qian J, Chen F, Li H (2022) Design of 2D/2D CoAl LDH/g-C
doi: 10.1016/j.snb.2021.131187
Yan P, Jin Y, Xu L, Mo Z, Qian J, Chen F, Yuan J, Xu H, Li H (2022) Enhanced photoelectrochemical aptasensing triggered by nitrogen deficiency and cyano group simultaneously engineered 2D carbon nitride for sensitively monitoring atrazine. Biosens Bioelectron 206:114144. https://doi.org/10.1016/j.bios.2022.114144
doi: 10.1016/j.bios.2022.114144
pubmed: 35279464
Wei J-J, Li H-B, Wang G-Q, Zheng J-Y, Wang A-J, Mei L-P, Zhao T, Feng J-J (2022) Novel ultrasensitive photoelectrochemical cytosensorbased on hollow CdIn
doi: 10.1021/acs.analchem.2c02982
pubmed: 35994715
Tian Y, Cui Q, Xu L, Jiao A, Ma H, Wang C, Zhang M, Wang X, Li S, Chen M (2021) Alloyed AuPt nanoframes loaded on h-BN nanosheets as an ingenious ultrasensitive near-infrared photoelectrochemical biosensor for accurate monitoring glucose in human tears. Biosens Bioelectron 192:113490. https://doi.org/10.1016/j.bios.2021.113490
doi: 10.1016/j.bios.2021.113490
pubmed: 34256262
Yang J, He G, Wu W, Deng W, Tan Y, Xie Q (2022) Sensitive photoelectrochemical determination of T4 polynucleotide kinase using AuNPs/SnS
doi: 10.1016/j.talanta.2022.123660
pubmed: 35689947
Song P, Wang M, Xue Y, Wang AJ, Mei LP, Feng JJ (2022) Bimetallic PtNi nanozyme-driven dual-amplified photoelectrochemical aptasensor for ultrasensitive detection of sulfamethazine based on Z-scheme heterostructured Co
doi: 10.1016/j.snb.2022.132519
Cai G, Yu Z, Ren R, Tang D (2018) Exciton–plasmon interaction between AuNPs/graphene nanohybrids and CdS quantum dots/TiO
doi: 10.1021/acssensors.7b00899
pubmed: 29465232
Yz S, Wang Z, Ning K, Ren C, Yang D, Hu X, Xu Q (2023) Ultrasensitive alkaline phosphatase activity assay based on controllable signal probe production coupled with the cathodic photoelectrochemical analysis. Food Chem 421:136177. https://doi.org/10.1016/j.foodchem.2023.136177
doi: 10.1016/j.foodchem.2023.136177
Zhao J, Wang S, Zhang S, Zhao P, Wang J, Yan M, Ge S, Yu J (2020) Peptide cleavage-mediated photoelectrochemical signal on-off via CuS electronic extinguisher for PSA detection. Biosens Bioelectron 150:111958. https://doi.org/10.1016/j.bios.2019.111958
doi: 10.1016/j.bios.2019.111958
pubmed: 31929089
Zang Y, Lei J, Ju H (2017) Principles and applications of photoelectrochemical sensing strategies based on biofunctionalized nanostructures. Biosens Bioelectron 96:8–16. https://doi.org/10.1016/j.bios.2017.04.030
doi: 10.1016/j.bios.2017.04.030
pubmed: 28454070
Dong YX, Cao JT, Wang B, Ma SH, Liu YM (2017) Exciton–plasmon interactions between CdS@g-C
doi: 10.1021/acssuschemeng.7b02774
Hu R, Xu BF, Xue Y, Xu ZZ, Wang AJ, Mei LP, Song P, Feng JJ (2023) Tailoring enzymatic loading capacity on CdS nanorods@ZnIn
doi: 10.1016/j.chemosphere.2023.137808
pubmed: 36638929
Yang Y, Liu L, Wu J, Qian X (2022) Hierarchical Bi
doi: 10.1016/j.jallcom.2022.166548
Long LL, Chen JJ, Zhang X, Zhang AY, Huang YX, Rong Q, Yu HQ (2016) Layer-controlled growth of MoS
doi: 10.1038/am.2016.46
Li F, Xu B, Yang W, Qi Z, Ma C, Wang Y, Zhang X, Luo Z, Liang D, Li D, Li Z, Pan A (2020) High-performance optoelectronic devices based on van der Waals vertical MoS
doi: 10.1007/s12274-020-2743-7
Xiao Y, Chen J, Jiang Y, Zhang W, Zhang J, Wu X, Deng W, Liu Z (2022) Fabrication of MoS
doi: 10.1016/j.seppur.2022.121928
Zheng Z, Qiao Y, Cai Y, He Y, Tang Y, Li L (2019) MoS
doi: 10.1016/j.jcis.2018.08.078
pubmed: 30179834
Fang L, Qiu Y, Zhai T, Wang F, Lan M, Huang K, Jing Q (2017) Flower-like nanoarchitecture assembled from Bi
doi: 10.1016/j.colsurfa.2017.09.022
Wang S, Li X, Chen Y, Cai X, Yao H, Gao W, Zheng Y, An X, Shi J, Chen H (2015) A facile one-pot synthesis of a two-dimensional MoS
doi: 10.1002/adma.201500870
pubmed: 25821185
Liu X, Xu X, Li F, Xu J, Ma H, Sun X, Wu D, Zhang C, Ren X, Wei Q (2022) Heterostructured Bi
doi: 10.1021/acsami.2c10323
pubmed: 35996968
Jiang H, Xing Z, Zhao T, Yang Z, Wang K, Li Z, Yang S, Xie L, Zhou W (2020) Plasmon Ag nanoparticle/Bi
doi: 10.1016/j.apcatb.2020.118947
Xu Y, Xu J, Yan W, Tang H, Tang G (2021) Synergistic effect of a noble metal free MoS
doi: 10.1016/j.ceramint.2020.12.010
Li M, Sun J, Cong B, Yao S, Chen G (2021) Sulphur vacancies modified Cd
doi: 10.1016/j.cej.2021.128868
Ke J, Liu J, Sun H, Zhang H, Duan X, Liang P, Li X, Tade MO, Liu S, Wang S (2017) Facile assembly of Bi
doi: 10.1016/j.apcatb.2016.06.071
Yang D, Lu C, Ma J, Luo M, Zhao Q, Jin Y, Xu X (2021) Enhanced nonlinear saturable absorption from type III van der waals heterostructure Bi
doi: 10.1016/j.apsusc.2020.147989
Drmosh QA, Hezam A, Hendi AHY, Qamar M, Yamani ZH, Byrappa K (2020) Ternary Bi
doi: 10.1016/j.apsusc.2019.143938
Zhang J, Zhang L, Yu N, Xu K, Li S, Wang H, Liu J (2015) Flower-like Bi
doi: 10.1039/C5RA13148K
Fu H, Xu T, Zhu S, Zhu Y (2008) Photocorrosion inhibition and enhancement of photocatalytic activity for ZnO via hybridization with C
doi: 10.1021/es801484x
pubmed: 19031903
Zhao WW, Yu PP, Shan Y, Wang J, Xu JJ, Chen HY (2012) Exciton-plasmon interactions between CdS quantum dots and Ag nanoparticles in photoelectrochemical system and its biosensing application. Anal Chem 84(14):5892–5897. https://doi.org/10.1021/ac300127s
doi: 10.1021/ac300127s
pubmed: 22765356
Wei J, Xie X, Chang W, Yang Z, Liu Y (2018) Ultrasensitive photoelectrochemical detection of microcystin-LR based on hybridization chain reaction assisted exciton-plasmon interaction and enzymatic biocatalytic precipitation. Sensors Actuators B Chem 276:180–188. https://doi.org/10.1016/j.snb.2018.08.099
doi: 10.1016/j.snb.2018.08.099
Li H, Cao Y, Wu T, Zhang Y, Zheng Z, Lv J, Mao A, Zhang Y, Tang Q, Li J (2021) Programmable DNA circuits for flexible and robust exciton–plasmon interaction-based photoelectrochemical biosensing. Anal Chem 93(31):11043–11051. https://doi.org/10.1021/acs.analchem.1c02488
doi: 10.1021/acs.analchem.1c02488
pubmed: 34319082
Luo J, Shao X, Gong Z, Sun X, Ma H, Wu D, Fan D, Li Y, Wei Q, Ju H (2022) Achieving Z-scheme charge transfer through constructing Bi
doi: 10.1016/j.snb.2022.132385
Ding L, Wei J, Qiu Y, Wang Y, Wen Z, Qian J, Hao N, Ding C, Li Y, Wang K (2021) One-step hydrothermal synthesis of telluride molybdenum/reduced graphene oxide with Schottky barrier for fabricating label-free photoelectrochemical profenofos aptasensor. Chem Eng J 407:127213. https://doi.org/10.1016/j.cej.2020.127213
doi: 10.1016/j.cej.2020.127213
Shen Z, Xu D, Wang G, Geng L, Xu R, Wang G, Guo Y, Sun X (2022) Novel colorimetric aptasensor based on MOF-derived materials and its applications for organophosphorus pesticides determination. J Hazard Mater 440:129707. https://doi.org/10.1016/j.jhazmat.2022.129707
doi: 10.1016/j.jhazmat.2022.129707
pubmed: 35986944
Jiao Y, Fu J, Hou W, Shi Z, Guo Y, Sun X, Yang Q, Li F (2018) Homogeneous electrochemical aptasensor based on a dual amplification strategy for sensitive detection of profenofos residues. New J Chem 42(17):14642–14647. https://doi.org/10.1039/C8NJ02262C
doi: 10.1039/C8NJ02262C
Zhang H, Sun J, Cheng S, Liu H, Li F, Guo Y, Sun X (2020) A dual-amplification electrochemical aptasensor for profenofos detection. J Electrochem Soc 167(2):027515. https://doi.org/10.1149/1945-7111/ab6972
doi: 10.1149/1945-7111/ab6972
Liu F, Zhao S, Lai X, Fan Y, Han P, Chen L (2022) Colorimetric and fluorescent probes for the rapid detection of profenofos in farmland system. Food Chem 393:133321. https://doi.org/10.1016/j.foodchem.2022.133321
doi: 10.1016/j.foodchem.2022.133321
pubmed: 35653988
Li C, Zhang G, Wu S, Zhang Q (2018) Aptamer-based microcantilever-array biosensor for profenofos detection. Anal Chim Acta 1020:116–122. https://doi.org/10.1016/j.aca.2018.02.072
doi: 10.1016/j.aca.2018.02.072
pubmed: 29655422
Han J, Yu Y, Wang G, Gao X, Geng L, Sun J, Zhang M, Meng X, Li F, Shi C, Sun X, Guo Y, Ahmed MBM (2022) Ultrasensitive electrochemiluminescence aptasensor based on ABEI reduced silver nanoparticles for the detection of profenofos. Sci Total Environ 844:157184. https://doi.org/10.1016/j.scitotenv.2022.157184
doi: 10.1016/j.scitotenv.2022.157184
pubmed: 35803425
Shi H, Zhao G, Cao T, Liu M, Guan C, Huang X, Zhu Z, Yang N, Williams OA (2012) Selective and visible-light-driven profenofos sensing with calixarene receptors on TiO
doi: 10.1016/j.elecom.2012.03.036