Hydrophobic interactions dominate the recognition of a KRAS G12V neoantigen.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
21 08 2023
21 08 2023
Historique:
received:
03
09
2022
accepted:
10
08
2023
medline:
23
8
2023
pubmed:
22
8
2023
entrez:
21
8
2023
Statut:
epublish
Résumé
Specificity remains a major challenge to current therapeutic strategies for cancer. Mutation associated neoantigens (MANAs) are products of genetic alterations, making them highly specific therapeutic targets. MANAs are HLA-presented (pHLA) peptides derived from intracellular mutant proteins that are otherwise inaccessible to antibody-based therapeutics. Here, we describe the cryo-EM structure of an antibody-MANA pHLA complex. Specifically, we determine a TCR mimic (TCRm) antibody bound to its MANA target, the KRAS
Identifiants
pubmed: 37604828
doi: 10.1038/s41467-023-40821-w
pii: 10.1038/s41467-023-40821-w
pmc: PMC10442379
doi:
Substances chimiques
Proto-Oncogene Proteins p21(ras)
EC 3.6.5.2
Antibodies
0
HLA-A Antigens
0
Types de publication
Journal Article
Research Support, U.S. Gov't, Non-P.H.S.
Research Support, N.I.H., Extramural
Langues
eng
Sous-ensembles de citation
IM
Pagination
5063Subventions
Organisme : NCI NIH HHS
ID : P30 CA006973
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA051008
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA270403
Pays : United States
Organisme : NIGMS NIH HHS
ID : P41 GM111244
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007309
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA230400
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM136577
Pays : United States
Organisme : NIAMS NIH HHS
ID : T32 AR048522
Pays : United States
Informations de copyright
© 2023. Springer Nature Limited.
Références
Pearlman, A. H. et al. Targeting public neoantigens for cancer immunotherapy. Nat Cancer 2, 487–497 (2021).
pubmed: 34676374
pmcid: 8525885
doi: 10.1038/s43018-021-00210-y
Hobbs, G. A., Der, C. J. & Rossman, K. L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 129, 1287–1292 (2016).
pubmed: 26985062
pmcid: 4869631
Chen, K., Zhang, Y., Qian, L. & Wang, P. Emerging strategies to target RAS signaling in human cancer therapy. J. Hematol. Oncol. 14, 116 (2021).
pubmed: 34301278
pmcid: 8299671
doi: 10.1186/s13045-021-01127-w
Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 (2020).
pubmed: 32209560
pmcid: 7367715
doi: 10.1158/0008-5472.CAN-19-3682
Ostrem, J. M. & Shokat, K. M. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat. Rev. Drug Discov. 15, 771–785 (2016).
pubmed: 27469033
doi: 10.1038/nrd.2016.139
Lanman, B. A. et al. Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors. J. Med. Chem. 63, 52–65 (2020).
pubmed: 31820981
doi: 10.1021/acs.jmedchem.9b01180
Nyiri, K., Koppany, G. & Vertessy, B. G. Structure-based inhibitor design of mutant RAS proteins-a paradigm shift. Cancer Metastasis Rev. 39, 1091–1105 (2020).
pubmed: 32715349
pmcid: 7680331
doi: 10.1007/s10555-020-09914-6
Vasta, J. D. et al. KRAS is vulnerable to reversible switch-II pocket engagement in cells. Nat. Chem. Biol. 18, 596–604 (2022).
pubmed: 35314814
pmcid: 9135634
doi: 10.1038/s41589-022-00985-w
Zhu, G., Pei, L., Xia, H., Tang, Q. & Bi, F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol. Cancer 20, 143 (2021).
pubmed: 34742312
pmcid: 8571891
doi: 10.1186/s12943-021-01441-4
Huang, L., Guo, Z., Wang, F. & Fu, L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct. Target Ther. 6, 386 (2021).
pubmed: 34776511
pmcid: 8591115
doi: 10.1038/s41392-021-00780-4
Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).
pubmed: 31666701
doi: 10.1038/s41586-019-1694-1
Zhang, Z. et al. GTP-state-selective cyclic peptide ligands of K-Ras(G12D) block its interaction with Raf. ACS Cent. Sci. 6, 1753–1761 (2020).
pubmed: 33145412
pmcid: 7596874
doi: 10.1021/acscentsci.0c00514
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).
pubmed: 24256730
pmcid: 4274051
doi: 10.1038/nature12796
Janne, P. A. et al. Adagrasib in non-small-cell lung cancer harboring a KRAS(G12C) mutation. N. Engl. J. Med. 387, 120–131 (2022).
pubmed: 35658005
doi: 10.1056/NEJMoa2204619
Hansen, R. et al. The reactivity-driven biochemical mechanism of covalent KRAS(G12C) inhibitors. Nat. Struct. Mol. Biol. 25, 454–462 (2018).
pubmed: 29760531
doi: 10.1038/s41594-018-0061-5
Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat. Med. 28, 2171–2182 (2022).
pubmed: 36216931
doi: 10.1038/s41591-022-02007-7
Mahadevan, K. K. et al. Oncogenic Kras (G12D) specific non-covalent inhibitor reprograms tumor microenvironment to prevent and reverse early pre-neoplastic pancreatic lesions and in combination with immunotherapy regresses advanced PDAC in a CD8 (+) T cells dependent manner. Preprint at bioRxiv https://doi.org/10.1101/2023.02.15.528757 (2023).
Hsiue, E. H. et al. Targeting a neoantigen derived from a common TP53 mutation. Science 371, eabc8697 (2021).
Douglass, J. et al. Bispecific antibodies targeting mutant RAS neoantigens. Sci. Immunol. 6 (2021).
Liddy, N. et al. Monoclonal TCR-redirected tumor cell killing. Nat. Med. 18, 980–987 (2012).
pubmed: 22561687
doi: 10.1038/nm.2764
Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).
pubmed: 33473220
pmcid: 7816749
doi: 10.1038/s41571-020-00460-2
Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).
pubmed: 25838375
doi: 10.1126/science.aaa4971
Sim, M. J. W. et al. High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proc. Natl Acad. Sci. USA 117, 12826–12835 (2020).
pubmed: 32461371
pmcid: 7293613
doi: 10.1073/pnas.1921964117
Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015).
pubmed: 26516200
pmcid: 7445892
doi: 10.1126/science.aad1253
Levin, N. et al. Identification and validation of T-cell receptors targeting RAS hotspot mutations in human cancers for use in cell-based immunotherapy. Clin. Cancer Res. 27, 5084–5095 (2021).
pubmed: 34168045
pmcid: 8448939
doi: 10.1158/1078-0432.CCR-21-0849
Lo, W. et al. Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer. Cancer Immunol. Res. 7, 534–543 (2019).
pubmed: 30709841
pmcid: 6685528
doi: 10.1158/2326-6066.CIR-18-0686
Kim, S. P. et al. Adoptive cellular therapy with autologous tumor-infiltrating lymphocytes and T-cell receptor-engineered T cells targeting common p53 neoantigens in human solid tumors. Cancer Immunol. Res. OF1–OF15 10, 932–946 (2022).
Holland, C. J. et al. Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA. J. Clin. Investig. 130, 2673–2688 (2020).
pubmed: 32310221
pmcid: 7190993
doi: 10.1172/JCI130562
Yu, J. et al. Mutation-specific antibodies for the detection of EGFR mutations in non-small-cell lung cancer. Clin. Cancer Res. 15, 3023–3028 (2009).
pubmed: 19366827
doi: 10.1158/1078-0432.CCR-08-2739
Choi, J. et al. Systematic discovery and validation of T cell targets directed against oncogenic KRAS mutations. Cell Rep. Methods 1, 100084 (2021).
pubmed: 35474673
pmcid: 9017224
doi: 10.1016/j.crmeth.2021.100084
Leidner, R. et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386, 2112–2119 (2022).
pubmed: 35648703
pmcid: 9531755
doi: 10.1056/NEJMoa2119662
Wang, Q. J. et al. Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol. Res. 4, 204–214 (2016).
pubmed: 26701267
doi: 10.1158/2326-6066.CIR-15-0188
Bear, A. S. et al. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat. Commun. 12, 4365 (2021).
pubmed: 34272369
pmcid: 8285372
doi: 10.1038/s41467-021-24562-2
Sim, M. J. W. & Sun, P. D. T cell recognition of tumor neoantigens and insights into T cell immunotherapy. Front. Immunol. 13, 833017 (2022).
pubmed: 35222422
pmcid: 8867076
doi: 10.3389/fimmu.2022.833017
Hwang, M. S. et al. Structural engineering of chimeric antigen receptors targeting HLA-restricted neoantigens. Nat. Commun. 12, 5271 (2021).
pubmed: 34489470
pmcid: 8421441
doi: 10.1038/s41467-021-25605-4
Ellerman, D. Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods 154, 102–117 (2019).
pubmed: 30395966
doi: 10.1016/j.ymeth.2018.10.026
Poussin, M. et al. Dichotomous impact of affinity on the function of T cell engaging bispecific antibodies. J. Immunother. Cancer 9, e002444 (2021).
Haber, L. et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci. Rep. 11, 14397 (2021).
pubmed: 34257348
pmcid: 8277787
doi: 10.1038/s41598-021-93842-0
Staflin, K. et al. Target arm affinities determine preclinical efficacy and safety of anti-HER2/CD3 bispecific antibody. JCI Insight 5, e133757 (2020).
Ahmed, M. et al. TCR-mimic bispecific antibodies targeting LMP2A show potent activity against EBV malignancies. JCI Insight 3, e97805 (2018).
Middleton, D., Menchaca, L., Rood, H. & Komerofsky, R. New allele frequency database: http://www.allelefrequencies.net . Tissue Antigens 61, 403–407 (2003).
Culshaw, A. et al. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8(+) T cell response. Nat. Immunol. 18, 1228–1237 (2017).
pubmed: 28945243
doi: 10.1038/ni.3850
Sundberg, E. J. et al. Minor structural changes in a mutated human melanoma antigen correspond to dramatically enhanced stimulation of a CD4+ tumor-infiltrating lymphocyte line. J. Mol. Biol. 319, 449–461 (2002).
pubmed: 12051920
doi: 10.1016/S0022-2836(02)00370-4
Wu, D., Gallagher, D. T., Gowthaman, R., Pierce, B. G. & Mariuzza, R. A. Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen. Nat Commun. 11, 2908 (2020).
pubmed: 32518267
pmcid: 7283474
doi: 10.1038/s41467-020-16755-y
Maus, M. V. et al. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Mol. Ther. Oncolytics 3, 1–9 (2016).
pubmed: 29675462
doi: 10.1038/mto.2016.23
Holler, P. D., Chlewicki, L. K. & Kranz, D. M. TCRs with high affinity for foreign pMHC show self-reactivity. Nat. Immunol. 4, 55–62 (2003).
pubmed: 12469116
doi: 10.1038/ni863
Zhao, Y. et al. High-affinity TCRs generated by phage display provide CD4+ T cells with the ability to recognize and kill tumor cell lines. J. Immunol. 179, 5845–5854 (2007).
pubmed: 17947658
doi: 10.4049/jimmunol.179.9.5845
Wu, D., Gowathaman, R., Pierce, B. G. & Mariuzza, R. A. T cell receptors employ diverse strategies to target a p53 cancer neoantigen. J. Biol. Chem. 298, 101684 (2022).
pubmed: 35124005
pmcid: 8897694
doi: 10.1016/j.jbc.2022.101684
Altman, J. D. & Davis, M. M. MHC-peptide tetramers to visualize antigen-specific T cells. Curr Protoc. Immunol. 115, 17 13 11–17 13 44 (2016).
doi: 10.1002/cpim.14
Garboczi, D. N., Hung, D. T. & Wiley, D. C. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl Acad. Sci. USA 89, 3429–3433 (1992).
pubmed: 1565634
pmcid: 48881
doi: 10.1073/pnas.89.8.3429
Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
pubmed: 15915565
doi: 10.1016/j.pep.2005.01.016
Miller, M. S. et al. Getting the most out of your crystals: data collection at the new high-flux, microfocus MX beamlines at NSLS-II. Molecules 24, 496 (2019).
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
pubmed: 20124692
pmcid: 2815665
doi: 10.1107/S0907444909047337
Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).
pubmed: 20057045
doi: 10.1107/S0907444909042589
Miller, M. S. et al. An engineered antibody fragment targeting mutant beta-catenin via major histocompatibility complex I neoantigen presentation. J. Biol. Chem. 294, 19322–19334 (2019).
pubmed: 31690625
pmcid: 6916501
doi: 10.1074/jbc.RA119.010251
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
pubmed: 21460441
pmcid: 3069738
doi: 10.1107/S0907444910045749
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).
pubmed: 15299926
doi: 10.1107/S0907444996012255
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).
pubmed: 31588918
pmcid: 6778852
doi: 10.1107/S2059798319011471
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002
pmcid: 2852313
doi: 10.1107/S0907444910007493
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563
doi: 10.1016/j.jsb.2005.07.007
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331–332 (2017).
pubmed: 28250466
pmcid: 5494038
doi: 10.1038/nmeth.4193
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 26278980
pmcid: 6760662
doi: 10.1016/j.jsb.2015.08.008
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290–296 (2017).
pubmed: 28165473
doi: 10.1038/nmeth.4169
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).
Ramlaul, K., Palmer, C. M., Nakane, T. & Aylett, C. H. S. Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER. J. Struct. Biol. 211, 107545 (2020).
pubmed: 32534144
pmcid: 7369633
doi: 10.1016/j.jsb.2020.107545
Vilas, J. L. et al. MonoRes: automatic and accurate estimation of local resolution for electron microscopy maps. Structure 26, 337–344.e334 (2018).
pubmed: 29395788
doi: 10.1016/j.str.2017.12.018
Ramirez-Aportela, E. et al. Automatic local resolution-based sharpening of cryo-EM maps. Bioinformatics 36, 765–772 (2020).
pubmed: 31504163
doi: 10.1093/bioinformatics/btz671
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101
doi: 10.1002/pro.3943
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537
doi: 10.1016/j.jmb.2007.05.022
Gowthaman, R. & Pierce, B. G. TCR3d: The T cell receptor structural repertoire database. Bioinformatics 35, 5323–5325 (2019).
pubmed: 31240309
pmcid: 6954642
doi: 10.1093/bioinformatics/btz517
Pierce, B. G. & Weng, Z. A flexible docking approach for prediction of T cell receptor-peptide-MHC complexes. Protein Sci. 22, 35–46 (2013).
pubmed: 23109003
doi: 10.1002/pro.2181
Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model 51, 2778–2786 (2011).
pubmed: 21919503
doi: 10.1021/ci200227u
Niesen, F. H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2, 2212–2221 (2007).
pubmed: 17853878
doi: 10.1038/nprot.2007.321
Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 357, 289–298 (2006).
pubmed: 16962548
doi: 10.1016/j.ab.2006.07.027
Myszka, D. G. Improving biosensor analysis. J. Mol. Recognit. 12, 279–284 (1999).
pubmed: 10556875
doi: 10.1002/(SICI)1099-1352(199909/10)12:5<279::AID-JMR473>3.0.CO;2-3
Swindells, M. B. et al. abYsis: integrated antibody sequence and structure-management, analysis, and prediction. J. Mol. Biol. 429, 356–364 (2017).
pubmed: 27561707
doi: 10.1016/j.jmb.2016.08.019
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
pubmed: 16731699
doi: 10.1093/bioinformatics/btl158
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
pubmed: 23060610
pmcid: 3516142
doi: 10.1093/bioinformatics/bts565
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods 14, 71–73 (2017).
pubmed: 27819658
doi: 10.1038/nmeth.4067
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254
doi: 10.1002/jcc.20084
Hess, B., Bekker, H., Berendsen, H. & Fraaije, J. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1998).
doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Hunter, J. Matplotlib is a 2D graphics package used for Python for application development, interactive scripting,and publication-quality image generation across user interfaces and operating systems. Comput. Sci. Eng. 9, 90–95 (2007).
doi: 10.1109/MCSE.2007.55