Hydrophobic interactions dominate the recognition of a KRAS G12V neoantigen.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
21 08 2023
Historique:
received: 03 09 2022
accepted: 10 08 2023
medline: 23 8 2023
pubmed: 22 8 2023
entrez: 21 8 2023
Statut: epublish

Résumé

Specificity remains a major challenge to current therapeutic strategies for cancer. Mutation associated neoantigens (MANAs) are products of genetic alterations, making them highly specific therapeutic targets. MANAs are HLA-presented (pHLA) peptides derived from intracellular mutant proteins that are otherwise inaccessible to antibody-based therapeutics. Here, we describe the cryo-EM structure of an antibody-MANA pHLA complex. Specifically, we determine a TCR mimic (TCRm) antibody bound to its MANA target, the KRAS

Identifiants

pubmed: 37604828
doi: 10.1038/s41467-023-40821-w
pii: 10.1038/s41467-023-40821-w
pmc: PMC10442379
doi:

Substances chimiques

Proto-Oncogene Proteins p21(ras) EC 3.6.5.2
Antibodies 0
HLA-A Antigens 0

Types de publication

Journal Article Research Support, U.S. Gov't, Non-P.H.S. Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

5063

Subventions

Organisme : NCI NIH HHS
ID : P30 CA006973
Pays : United States
Organisme : NCI NIH HHS
ID : P30 CA051008
Pays : United States
Organisme : NCI NIH HHS
ID : K08 CA270403
Pays : United States
Organisme : NIGMS NIH HHS
ID : P41 GM111244
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM007309
Pays : United States
Organisme : NCI NIH HHS
ID : R37 CA230400
Pays : United States
Organisme : NIGMS NIH HHS
ID : T32 GM136577
Pays : United States
Organisme : NIAMS NIH HHS
ID : T32 AR048522
Pays : United States

Informations de copyright

© 2023. Springer Nature Limited.

Références

Pearlman, A. H. et al. Targeting public neoantigens for cancer immunotherapy. Nat Cancer 2, 487–497 (2021).
pubmed: 34676374 pmcid: 8525885 doi: 10.1038/s43018-021-00210-y
Hobbs, G. A., Der, C. J. & Rossman, K. L. RAS isoforms and mutations in cancer at a glance. J. Cell Sci. 129, 1287–1292 (2016).
pubmed: 26985062 pmcid: 4869631
Chen, K., Zhang, Y., Qian, L. & Wang, P. Emerging strategies to target RAS signaling in human cancer therapy. J. Hematol. Oncol. 14, 116 (2021).
pubmed: 34301278 pmcid: 8299671 doi: 10.1186/s13045-021-01127-w
Prior, I. A., Hood, F. E. & Hartley, J. L. The frequency of Ras mutations in cancer. Cancer Res. 80, 2969–2974 (2020).
pubmed: 32209560 pmcid: 7367715 doi: 10.1158/0008-5472.CAN-19-3682
Ostrem, J. M. & Shokat, K. M. Direct small-molecule inhibitors of KRAS: from structural insights to mechanism-based design. Nat. Rev. Drug Discov. 15, 771–785 (2016).
pubmed: 27469033 doi: 10.1038/nrd.2016.139
Lanman, B. A. et al. Discovery of a covalent inhibitor of KRAS(G12C) (AMG 510) for the treatment of solid tumors. J. Med. Chem. 63, 52–65 (2020).
pubmed: 31820981 doi: 10.1021/acs.jmedchem.9b01180
Nyiri, K., Koppany, G. & Vertessy, B. G. Structure-based inhibitor design of mutant RAS proteins-a paradigm shift. Cancer Metastasis Rev. 39, 1091–1105 (2020).
pubmed: 32715349 pmcid: 7680331 doi: 10.1007/s10555-020-09914-6
Vasta, J. D. et al. KRAS is vulnerable to reversible switch-II pocket engagement in cells. Nat. Chem. Biol. 18, 596–604 (2022).
pubmed: 35314814 pmcid: 9135634 doi: 10.1038/s41589-022-00985-w
Zhu, G., Pei, L., Xia, H., Tang, Q. & Bi, F. Role of oncogenic KRAS in the prognosis, diagnosis and treatment of colorectal cancer. Mol. Cancer 20, 143 (2021).
pubmed: 34742312 pmcid: 8571891 doi: 10.1186/s12943-021-01441-4
Huang, L., Guo, Z., Wang, F. & Fu, L. KRAS mutation: from undruggable to druggable in cancer. Signal Transduct. Target Ther. 6, 386 (2021).
pubmed: 34776511 pmcid: 8591115 doi: 10.1038/s41392-021-00780-4
Canon, J. et al. The clinical KRAS(G12C) inhibitor AMG 510 drives anti-tumour immunity. Nature 575, 217–223 (2019).
pubmed: 31666701 doi: 10.1038/s41586-019-1694-1
Zhang, Z. et al. GTP-state-selective cyclic peptide ligands of K-Ras(G12D) block its interaction with Raf. ACS Cent. Sci. 6, 1753–1761 (2020).
pubmed: 33145412 pmcid: 7596874 doi: 10.1021/acscentsci.0c00514
Ostrem, J. M., Peters, U., Sos, M. L., Wells, J. A. & Shokat, K. M. K-Ras(G12C) inhibitors allosterically control GTP affinity and effector interactions. Nature 503, 548–551 (2013).
pubmed: 24256730 pmcid: 4274051 doi: 10.1038/nature12796
Janne, P. A. et al. Adagrasib in non-small-cell lung cancer harboring a KRAS(G12C) mutation. N. Engl. J. Med. 387, 120–131 (2022).
pubmed: 35658005 doi: 10.1056/NEJMoa2204619
Hansen, R. et al. The reactivity-driven biochemical mechanism of covalent KRAS(G12C) inhibitors. Nat. Struct. Mol. Biol. 25, 454–462 (2018).
pubmed: 29760531 doi: 10.1038/s41594-018-0061-5
Hallin, J. et al. Anti-tumor efficacy of a potent and selective non-covalent KRAS(G12D) inhibitor. Nat. Med. 28, 2171–2182 (2022).
pubmed: 36216931 doi: 10.1038/s41591-022-02007-7
Mahadevan, K. K. et al. Oncogenic Kras (G12D) specific non-covalent inhibitor reprograms tumor microenvironment to prevent and reverse early pre-neoplastic pancreatic lesions and in combination with immunotherapy regresses advanced PDAC in a CD8 (+) T cells dependent manner. Preprint at bioRxiv https://doi.org/10.1101/2023.02.15.528757 (2023).
Hsiue, E. H. et al. Targeting a neoantigen derived from a common TP53 mutation. Science 371, eabc8697 (2021).
Douglass, J. et al. Bispecific antibodies targeting mutant RAS neoantigens. Sci. Immunol. 6 (2021).
Liddy, N. et al. Monoclonal TCR-redirected tumor cell killing. Nat. Med. 18, 980–987 (2012).
pubmed: 22561687 doi: 10.1038/nm.2764
Blass, E. & Ott, P. A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 18, 215–229 (2021).
pubmed: 33473220 pmcid: 7816749 doi: 10.1038/s41571-020-00460-2
Schumacher, T. N. & Schreiber, R. D. Neoantigens in cancer immunotherapy. Science 348, 69–74 (2015).
pubmed: 25838375 doi: 10.1126/science.aaa4971
Sim, M. J. W. et al. High-affinity oligoclonal TCRs define effective adoptive T cell therapy targeting mutant KRAS-G12D. Proc. Natl Acad. Sci. USA 117, 12826–12835 (2020).
pubmed: 32461371 pmcid: 7293613 doi: 10.1073/pnas.1921964117
Tran, E. et al. Immunogenicity of somatic mutations in human gastrointestinal cancers. Science 350, 1387–1390 (2015).
pubmed: 26516200 pmcid: 7445892 doi: 10.1126/science.aad1253
Levin, N. et al. Identification and validation of T-cell receptors targeting RAS hotspot mutations in human cancers for use in cell-based immunotherapy. Clin. Cancer Res. 27, 5084–5095 (2021).
pubmed: 34168045 pmcid: 8448939 doi: 10.1158/1078-0432.CCR-21-0849
Lo, W. et al. Immunologic recognition of a shared p53 mutated neoantigen in a patient with metastatic colorectal cancer. Cancer Immunol. Res. 7, 534–543 (2019).
pubmed: 30709841 pmcid: 6685528 doi: 10.1158/2326-6066.CIR-18-0686
Kim, S. P. et al. Adoptive cellular therapy with autologous tumor-infiltrating lymphocytes and T-cell receptor-engineered T cells targeting common p53 neoantigens in human solid tumors. Cancer Immunol. Res. OF1–OF15 10, 932–946 (2022).
Holland, C. J. et al. Specificity of bispecific T cell receptors and antibodies targeting peptide-HLA. J. Clin. Investig. 130, 2673–2688 (2020).
pubmed: 32310221 pmcid: 7190993 doi: 10.1172/JCI130562
Yu, J. et al. Mutation-specific antibodies for the detection of EGFR mutations in non-small-cell lung cancer. Clin. Cancer Res. 15, 3023–3028 (2009).
pubmed: 19366827 doi: 10.1158/1078-0432.CCR-08-2739
Choi, J. et al. Systematic discovery and validation of T cell targets directed against oncogenic KRAS mutations. Cell Rep. Methods 1, 100084 (2021).
pubmed: 35474673 pmcid: 9017224 doi: 10.1016/j.crmeth.2021.100084
Leidner, R. et al. Neoantigen T-cell receptor gene therapy in pancreatic cancer. N. Engl. J. Med. 386, 2112–2119 (2022).
pubmed: 35648703 pmcid: 9531755 doi: 10.1056/NEJMoa2119662
Wang, Q. J. et al. Identification of T-cell receptors targeting KRAS-mutated human tumors. Cancer Immunol. Res. 4, 204–214 (2016).
pubmed: 26701267 doi: 10.1158/2326-6066.CIR-15-0188
Bear, A. S. et al. Biochemical and functional characterization of mutant KRAS epitopes validates this oncoprotein for immunological targeting. Nat. Commun. 12, 4365 (2021).
pubmed: 34272369 pmcid: 8285372 doi: 10.1038/s41467-021-24562-2
Sim, M. J. W. & Sun, P. D. T cell recognition of tumor neoantigens and insights into T cell immunotherapy. Front. Immunol. 13, 833017 (2022).
pubmed: 35222422 pmcid: 8867076 doi: 10.3389/fimmu.2022.833017
Hwang, M. S. et al. Structural engineering of chimeric antigen receptors targeting HLA-restricted neoantigens. Nat. Commun. 12, 5271 (2021).
pubmed: 34489470 pmcid: 8421441 doi: 10.1038/s41467-021-25605-4
Ellerman, D. Bispecific T-cell engagers: towards understanding variables influencing the in vitro potency and tumor selectivity and their modulation to enhance their efficacy and safety. Methods 154, 102–117 (2019).
pubmed: 30395966 doi: 10.1016/j.ymeth.2018.10.026
Poussin, M. et al. Dichotomous impact of affinity on the function of T cell engaging bispecific antibodies. J. Immunother. Cancer 9, e002444 (2021).
Haber, L. et al. Generation of T-cell-redirecting bispecific antibodies with differentiated profiles of cytokine release and biodistribution by CD3 affinity tuning. Sci. Rep. 11, 14397 (2021).
pubmed: 34257348 pmcid: 8277787 doi: 10.1038/s41598-021-93842-0
Staflin, K. et al. Target arm affinities determine preclinical efficacy and safety of anti-HER2/CD3 bispecific antibody. JCI Insight 5, e133757 (2020).
Ahmed, M. et al. TCR-mimic bispecific antibodies targeting LMP2A show potent activity against EBV malignancies. JCI Insight 3, e97805 (2018).
Middleton, D., Menchaca, L., Rood, H. & Komerofsky, R. New allele frequency database: http://www.allelefrequencies.net . Tissue Antigens 61, 403–407 (2003).
Culshaw, A. et al. Germline bias dictates cross-serotype reactivity in a common dengue-virus-specific CD8(+) T cell response. Nat. Immunol. 18, 1228–1237 (2017).
pubmed: 28945243 doi: 10.1038/ni.3850
Sundberg, E. J. et al. Minor structural changes in a mutated human melanoma antigen correspond to dramatically enhanced stimulation of a CD4+ tumor-infiltrating lymphocyte line. J. Mol. Biol. 319, 449–461 (2002).
pubmed: 12051920 doi: 10.1016/S0022-2836(02)00370-4
Wu, D., Gallagher, D. T., Gowthaman, R., Pierce, B. G. & Mariuzza, R. A. Structural basis for oligoclonal T cell recognition of a shared p53 cancer neoantigen. Nat Commun. 11, 2908 (2020).
pubmed: 32518267 pmcid: 7283474 doi: 10.1038/s41467-020-16755-y
Maus, M. V. et al. An MHC-restricted antibody-based chimeric antigen receptor requires TCR-like affinity to maintain antigen specificity. Mol. Ther. Oncolytics 3, 1–9 (2016).
pubmed: 29675462 doi: 10.1038/mto.2016.23
Holler, P. D., Chlewicki, L. K. & Kranz, D. M. TCRs with high affinity for foreign pMHC show self-reactivity. Nat. Immunol. 4, 55–62 (2003).
pubmed: 12469116 doi: 10.1038/ni863
Zhao, Y. et al. High-affinity TCRs generated by phage display provide CD4+ T cells with the ability to recognize and kill tumor cell lines. J. Immunol. 179, 5845–5854 (2007).
pubmed: 17947658 doi: 10.4049/jimmunol.179.9.5845
Wu, D., Gowathaman, R., Pierce, B. G. & Mariuzza, R. A. T cell receptors employ diverse strategies to target a p53 cancer neoantigen. J. Biol. Chem. 298, 101684 (2022).
pubmed: 35124005 pmcid: 8897694 doi: 10.1016/j.jbc.2022.101684
Altman, J. D. & Davis, M. M. MHC-peptide tetramers to visualize antigen-specific T cells. Curr Protoc. Immunol. 115, 17 13 11–17 13 44 (2016).
doi: 10.1002/cpim.14
Garboczi, D. N., Hung, D. T. & Wiley, D. C. HLA-A2-peptide complexes: refolding and crystallization of molecules expressed in Escherichia coli and complexed with single antigenic peptides. Proc. Natl Acad. Sci. USA 89, 3429–3433 (1992).
pubmed: 1565634 pmcid: 48881 doi: 10.1073/pnas.89.8.3429
Studier, F. W. Protein production by auto-induction in high density shaking cultures. Protein Expr. Purif. 41, 207–234 (2005).
pubmed: 15915565 doi: 10.1016/j.pep.2005.01.016
Miller, M. S. et al. Getting the most out of your crystals: data collection at the new high-flux, microfocus MX beamlines at NSLS-II. Molecules 24, 496 (2019).
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
pubmed: 20124692 pmcid: 2815665 doi: 10.1107/S0907444909047337
Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).
pubmed: 20057045 doi: 10.1107/S0907444909042589
Miller, M. S. et al. An engineered antibody fragment targeting mutant beta-catenin via major histocompatibility complex I neoantigen presentation. J. Biol. Chem. 294, 19322–19334 (2019).
pubmed: 31690625 pmcid: 6916501 doi: 10.1074/jbc.RA119.010251
Winn, M. D. et al. Overview of the CCP4 suite and current developments. Acta Crystallogr. D Biol. Crystallogr. 67, 235–242 (2011).
pubmed: 21460441 pmcid: 3069738 doi: 10.1107/S0907444910045749
Murshudov, G. N., Vagin, A. A. & Dodson, E. J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).
pubmed: 15299926 doi: 10.1107/S0907444996012255
Liebschner, D. et al. Macromolecular structure determination using X-rays, neutrons and electrons: recent developments in Phenix. Acta Crystallogr. D Struct. Biol. 75, 861–877 (2019).
pubmed: 31588918 pmcid: 6778852 doi: 10.1107/S2059798319011471
Emsley, P., Lohkamp, B., Scott, W. G. & Cowtan, K. Features and development of Coot. Acta Crystallogr. D Biol. Crystallogr. 66, 486–501 (2010).
pubmed: 20383002 pmcid: 2852313 doi: 10.1107/S0907444910007493
Mastronarde, D. N. Automated electron microscope tomography using robust prediction of specimen movements. J. Struct. Biol. 152, 36–51 (2005).
pubmed: 16182563 doi: 10.1016/j.jsb.2005.07.007
Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat Methods 14, 331–332 (2017).
pubmed: 28250466 pmcid: 5494038 doi: 10.1038/nmeth.4193
Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015).
pubmed: 26278980 pmcid: 6760662 doi: 10.1016/j.jsb.2015.08.008
Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat Methods 14, 290–296 (2017).
pubmed: 28165473 doi: 10.1038/nmeth.4169
Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. Elife 7, e42166 (2018).
Ramlaul, K., Palmer, C. M., Nakane, T. & Aylett, C. H. S. Mitigating local over-fitting during single particle reconstruction with SIDESPLITTER. J. Struct. Biol. 211, 107545 (2020).
pubmed: 32534144 pmcid: 7369633 doi: 10.1016/j.jsb.2020.107545
Vilas, J. L. et al. MonoRes: automatic and accurate estimation of local resolution for electron microscopy maps. Structure 26, 337–344.e334 (2018).
pubmed: 29395788 doi: 10.1016/j.str.2017.12.018
Ramirez-Aportela, E. et al. Automatic local resolution-based sharpening of cryo-EM maps. Bioinformatics 36, 765–772 (2020).
pubmed: 31504163 doi: 10.1093/bioinformatics/btz671
Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021).
pubmed: 32881101 doi: 10.1002/pro.3943
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Krissinel, E. & Henrick, K. Inference of macromolecular assemblies from crystalline state. J. Mol. Biol. 372, 774–797 (2007).
pubmed: 17681537 doi: 10.1016/j.jmb.2007.05.022
Gowthaman, R. & Pierce, B. G. TCR3d: The T cell receptor structural repertoire database. Bioinformatics 35, 5323–5325 (2019).
pubmed: 31240309 pmcid: 6954642 doi: 10.1093/bioinformatics/btz517
Pierce, B. G. & Weng, Z. A flexible docking approach for prediction of T cell receptor-peptide-MHC complexes. Protein Sci. 22, 35–46 (2013).
pubmed: 23109003 doi: 10.1002/pro.2181
Laskowski, R. A. & Swindells, M. B. LigPlot+: multiple ligand-protein interaction diagrams for drug discovery. J. Chem. Inf. Model 51, 2778–2786 (2011).
pubmed: 21919503 doi: 10.1021/ci200227u
Niesen, F. H., Berglund, H. & Vedadi, M. The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nat Protoc. 2, 2212–2221 (2007).
pubmed: 17853878 doi: 10.1038/nprot.2007.321
Ericsson, U. B., Hallberg, B. M., Detitta, G. T., Dekker, N. & Nordlund, P. Thermofluor-based high-throughput stability optimization of proteins for structural studies. Anal. Biochem. 357, 289–298 (2006).
pubmed: 16962548 doi: 10.1016/j.ab.2006.07.027
Myszka, D. G. Improving biosensor analysis. J. Mol. Recognit. 12, 279–284 (1999).
pubmed: 10556875 doi: 10.1002/(SICI)1099-1352(199909/10)12:5<279::AID-JMR473>3.0.CO;2-3
Swindells, M. B. et al. abYsis: integrated antibody sequence and structure-management, analysis, and prediction. J. Mol. Biol. 429, 356–364 (2017).
pubmed: 27561707 doi: 10.1016/j.jmb.2016.08.019
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
pubmed: 16731699 doi: 10.1093/bioinformatics/btl158
Fu, L., Niu, B., Zhu, Z., Wu, S. & Li, W. CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28, 3150–3152 (2012).
pubmed: 23060610 pmcid: 3516142 doi: 10.1093/bioinformatics/bts565
Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nature Methods 14, 71–73 (2017).
pubmed: 27819658 doi: 10.1038/nmeth.4067
Abraham, M. J. et al. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1, 19–25 (2015).
doi: 10.1016/j.softx.2015.06.001
Pettersen, E. F. et al. UCSF Chimera–a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004).
pubmed: 15264254 doi: 10.1002/jcc.20084
Hess, B., Bekker, H., Berendsen, H. & Fraaije, J. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1998).
doi: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H
Hunter, J. Matplotlib is a 2D graphics package used for Python for application development, interactive scripting,and publication-quality image generation across user interfaces and operating systems. Comput. Sci. Eng. 9, 90–95 (2007).
doi: 10.1109/MCSE.2007.55

Auteurs

Katharine M Wright (KM)

Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA.
Discovery Chemistry, Protein and Structural Chemistry, Merck & Co, Inc, West Point, PA, 19846, USA.

Sarah R DiNapoli (SR)

Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

Michelle S Miller (MS)

Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA.
Walter and Eliza Hall Institute, Parkville, VIC, 3052, Australia.

P Aitana Azurmendi (P)

Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.
Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA.

Xiaowei Zhao (X)

Janelia Research Campus, HHMI,19700 Helix Drive, Ashburn, VA, 20147, USA.

Zhiheng Yu (Z)

Janelia Research Campus, HHMI,19700 Helix Drive, Ashburn, VA, 20147, USA.

Mayukh Chakrabarti (M)

Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA.

WuXian Shi (W)

Energy & Photon Sciences Directorate, Brookhaven National Laboratory, Upton, NY, 11973, USA.
Case Center for Synchrotron Biosciences, Case Western Reserve University, Cleveland, OH, 44106, USA.

Jacqueline Douglass (J)

Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

Michael S Hwang (MS)

Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

Emily Han-Chung Hsiue (EH)

Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Novartis Institutes for BioMedical Research, 250 Massachusetts Ave, Cambridge, MA, 02139, USA.

Brian J Mog (BJ)

Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.

Alexander H Pearlman (AH)

Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

Suman Paul (S)

Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Division of Hematologic Malignancies and Bone Marrow Transplantation, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

Maximilian F Konig (MF)

Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Division of Rheumatology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21224, USA.

Drew M Pardoll (DM)

Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

Chetan Bettegowda (C)

Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

Nickolas Papadopoulos (N)

Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

Kenneth W Kinzler (KW)

Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA.
Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.

Bert Vogelstein (B)

Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA.
Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA.
Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.

Shibin Zhou (S)

Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA. sbzhou@jhmi.edu.
Ludwig Center, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. sbzhou@jhmi.edu.
Lustgarten Pancreatic Cancer Research Laboratory, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. sbzhou@jhmi.edu.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. sbzhou@jhmi.edu.

Sandra B Gabelli (SB)

Department of Biophysics and Biophysical Chemistry, The Johns Hopkins School of Medicine, Baltimore, MD, 21205, USA. Sandra.gabelli@merck.com.
Bloomberg~Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Baltimore, MD, 21287, USA. Sandra.gabelli@merck.com.
Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA. Sandra.gabelli@merck.com.
Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA. Sandra.gabelli@merck.com.
Discovery Chemistry, Protein and Structural Chemistry, Merck & Co, Inc, West Point, PA, 19846, USA. Sandra.gabelli@merck.com.

Articles similaires

T-Lymphocytes, Regulatory Lung Neoplasms Proto-Oncogene Proteins p21(ras) Animals Humans
Humans Receptors, Antigen, T-Cell Proto-Oncogene Proteins p21(ras) Pancreatic Neoplasms T-Lymphocytes

High mitochondrial DNA levels accelerate lung adenocarcinoma progression.

Mara Mennuni, Stephen E Wilkie, Pauline Michon et al.
1.00
DNA, Mitochondrial Animals Adenocarcinoma of Lung Disease Progression Mice

Antibodies get under the skin.

Chiara Levra Levron, Gabriele Piacenti, Giacomo Donati
1.00
Humans Skin Antibodies Sebaceous Glands Animals

Classifications MeSH