Deciphering the Role of the Ser-Phosphorylation Pattern on the DNA-Binding Activity of Max Transcription Factor Using Chemical Protein Synthesis.
Chemical Protein Synthesis
Phosphorylation
Post-Translational Modifications
Total Synthesis
Transcription Factors
Journal
Angewandte Chemie (International ed. in English)
ISSN: 1521-3773
Titre abrégé: Angew Chem Int Ed Engl
Pays: Germany
ID NLM: 0370543
Informations de publication
Date de publication:
20 11 2023
20 11 2023
Historique:
received:
29
07
2023
medline:
16
11
2023
pubmed:
29
8
2023
entrez:
29
8
2023
Statut:
ppublish
Résumé
The chemical synthesis of site-specifically modified transcription factors (TFs) is a powerful method to investigate how post-translational modifications (PTMs) influence TF-DNA interactions and impact gene expression. Among these TFs, Max plays a pivotal role in controlling the expression of 15 % of the genome. The activity of Max is regulated by PTMs; Ser-phosphorylation at the N-terminus is considered one of the key regulatory mechanisms. In this study, we developed a practical synthetic strategy to prepare homogeneous full-length Max for the first time, to explore the impact of Max phosphorylation. We prepared a focused library of eight Max variants, with distinct modification patterns, including mono-phosphorylated, and doubly phosphorylated analogues at Ser2/Ser11 as well as fluorescently labeled variants through native chemical ligation. Through comprehensive DNA binding analyses, we discovered that the phosphorylation position plays a crucial role in the DNA-binding activity of Max. Furthermore, in vitro high-throughput analysis using DNA microarrays revealed that the N-terminus phosphorylation pattern does not interfere with the DNA sequence specificity of Max. Our work provides insights into the regulatory role of Max's phosphorylation on the DNA interactions and sequence specificity, shedding light on how PTMs influence TF function.
Identifiants
pubmed: 37642402
doi: 10.1002/anie.202310913
doi:
Substances chimiques
Transcription Factors
0
DNA
9007-49-2
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e202310913Informations de copyright
© 2023 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbH.
Références
S. A. Lambert, A. Jolma, L. F. Campitelli, P. K. Das, Y. Yin, M. Albu, X. Chen, J. Taipale, T. R. Hughes, M. T. Weirauch, Cell 2018, 175, 598-599;
C. Wolberger, Curr. Opin. Struct. Biol. 1993, 3, 3-10.
E. M. Blackwood, R. N. Eisenman, Science 1991, 251, 1211-1217.
M. Kalkat, J. De Melo, K. A. Hickman, C. Lourenco, C. Redel, D. Resetca, A. Tamachi, W. B. Tu, L. Z. Penn, Genes 2017, 8, 151.
A. R. Ferre-D'Amare, G. C. Prendergast, E. B. Ziff, S. K. Burley, Nature 1993, 363, 38-45.
B. Amati, S. Dalton, M. W. Brooks, T. D. Littlewood, G. I. Evan, H. Land, Nature 1992, 359, 423-426.
C. T. Walsh, S. Garneau-Tsodikova, G. J. Gatto, Jr., Angew. Chem. Int. Ed. 2005, 44, 7342-7372;
M. Holt, T. Muir, Annu. Rev. Biochem. 2015, 84, 265-290.
P. Brownlie, T. Ceska, M. Lamers, C. Romier, G. Stier, H. Teo, D. Suck, Structure 1997, 5, 509-520.
F. Faiola, Y. T. Wu, S. Q. Pan, K. L. Zhang, A. Farina, E. Martinez, Biochem. J. 2007, 403, 397-407.
E. V. Prochownik, M. E. VanAntwerp, Proc. Natl. Acad. Sci. USA 1993, 90, 960-964.
S. J. Berberich, M. D. Cole, Genes Dev. 1992, 6, 166-176;
P. J. Koskinen, I. Vastrik, T. P. Makela, R. N. Eisenman, K. Alitalo, Cell Growth Differ. 1994, 5, 313-320.
S. Schutz, C. Bergsdorf, B. Goretzki, A. Lingel, M. Renatus, A. D. Gossert, W. Jahnke, J. Mol. Biol. 2022, 22, 167349.
S. B. Kent, Annu. Rev. Biochem. 1988, 57, 957-989;
S. Bondalapati, M. Jbara, A. Brik, Nat. Chem. 2016, 8, 407-418;
V. R. Pattabiraman, J. W. Bode, Nature 2011, 480, 471-479;
T. W. Muir, Annu. Rev. Biochem. 2003, 72, 249-289;
Z. A. Wang, P. A. Cole, Methods Mol. Biol. 2020, 2133, 1-13;
Y. Tan, H. X. Wu, T. Y. Wei, X. C. Li, J. Am. Chem. Soc. 2020, 142, 20288-20298.
M. Haj-Yahya, H. A. Lashuel, J. Am. Chem. Soc. 2018, 140, 6611-6621;
B. Premdjee, A. S. Andersen, M. Larance, K. W. Conde-Frieboes, R. J. Payne, J. Am. Chem. Soc. 2021, 143, 5336-5342;
R. Iwase, D. R. Dempsey, S. D. Whedon, H. J. Jiang, B. A. Palanski, B. D. Y. Deng, P. A. Cole, J. Am. Chem. Soc. 2023, 145, 6039-6044;
M. Jbara, S. K. Maity, M. Morgan, C. Wolberger, A. Brik, Angew. Chem. Int. Ed. 2016, 55, 4972-4976;
R. K. McGinty, J. Kim, C. Chatterjee, R. G. Roeder, T. W. Muir, Nature 2008, 453, 812-U812;
K. S. Ajish Kumar, M. Haj-Yahya, D. Olschewski, H. A. Lashuel, A. Brik, Angew. Chem. Int. Ed. 2009, 48, 8090-8094;
S. Tang, L. J. Liang, Y. Y. Si, S. Gao, J. X. Wang, J. Liang, Z. Q. Mei, J. S. Zheng, L. Liu, Angew. Chem. Int. Ed. 2017, 56, 13333-13337;
H. X. Li, J. Zhang, C. J. An, S. W. Dong, J. Am. Chem. Soc. 2021, 143, 2846-2856;
C. Unverzagt, Y. Kajihara, Chem. Soc. Rev. 2013, 42, 4408-4420;
M. Msallam, H. Sun, R. Meledin, P. Franz, A. Brik, Chem. Sci. 2020, 11, 5526-5531;
S. Bondalapati, W. Mansour, M. A. Nakasone, S. K. Maity, M. H. Glickman, A. Brik, Chem. Eur. J. 2015, 21, 7360-7364.
M. Jbara, S. Laps, M. Morgan, G. Kamnesky, G. Mann, C. Wolberger, A. Brik, Nat. Commun. 2018, 9, 3154;
M. Jbara, S. Pomplun, C. K. Schissel, S. W. Hawken, A. Boija, I. Klein, J. Rodriguez, S. L. Buchwald, B. L. Pentelute, J. Am. Chem. Soc. 2021, 143, 11788-11798;
G. Mann, G. Satish, R. Meledin, G. B. Vamisetti, A. Brik, Angew. Chem. Int. Ed. 2019, 58, 13540-13549.
A. F. L. Schneider, M. Kithil, M. C. Cardoso, M. Lehmann, C. P. R. Hackenberger, Nat. Chem. 2021, 13, 530-539;
G. C. Gavins, K. Groger, M. D. Bartoschek, P. Wolf, A. G. Beck-Sickinger, S. Bultmann, O. Seitz, Nat. Chem. 2021, 13, 15-23.
C. P. Hackenberger, D. Schwarzer, Angew. Chem. Int. Ed. 2008, 47, 10030-10074;
V. Agouridas, O. El Mahdi, V. Diemer, M. Cargoet, J. C. M. Monbaliu, O. Melnyk, Chem. Rev. 2019, 119, 7328-7443;
S. S. Kulkarni, J. Sayers, B. Premdjee, R. J. Payne, Nat. Chem. Rev. 2018, 2, 0122.
O. Harel, M. Jbara, Angew. Chem. Int. Ed. 2023, 62, e202217716;
R. J. Taylor, M. B. Geeson, T. Journeaux, G. J. L. Bernardes, J. Am. Chem. Soc. 2022, 144, 14404-14419;
S. Kent, Bioorg. Med. Chem. 2017, 25, 4926-4937.
L. E. Canne, A. R. Ferredamare, S. K. Burley, S. B. H. Kent, J. Am. Chem. Soc. 1995, 117, 2998-3007;
S. Pomplun, M. Jbara, C. K. Schissel, S. Wilson Hawken, A. Boija, C. Li, I. Klein, B. L. Pentelute, ACS Cent. Sci. 2021, 7, 1408-1418;
X. Lin, R. V. Nithun, R. Samanta, O. Harel, M. Jbara, Org. Lett. 2023, 25, 4715-4719.
P. E. Dawson, T. W. Muir, I. Clarklewis, S. B. H. Kent, Science 1994, 266, 776-779;
P. E. Dawson, Isr. J. Chem. 2011, 51, 862-867.
J. B. Blanco-Canosa, P. E. Dawson, Angew. Chem. Int. Ed. 2008, 47, 6851-6855.
S. K. Maity, M. Jbara, S. Laps, A. Brik, Angew. Chem. Int. Ed. 2016, 55, 8108-8112.
G. M. Fang, Y. M. Li, F. Shen, Y. C. Huang, J. B. Li, Y. Lin, H. K. Cui, L. Liu, Angew. Chem. Int. Ed. 2011, 50, 7645-7649;
G. M. Fang, J. X. Wang, L. Liu, Angew. Chem. Int. Ed. 2012, 51, 10347-10350.
J. S. Zheng, S. Tang, Y. K. Qi, Z. P. Wang, L. Liu, Nat. Protoc. 2013, 8, 2483-2495.
Q. Wan, S. J. Danishefsky, Angew. Chem. Int. Ed. 2007, 46, 9248-9252.
J. Z. Hu, A. Banerjee, D. J. Goss, Biochemistry 2005, 44, 11855-11863.
R. Gordân, K. F. Murphy, R. P. McCord, C. Zhu, A. Vedenko, M. L. Bulyk, Genome Biol. 2011, 12, R125;
G. Badis, M. F. Berger, A. A. Philippakis, S. Talukder, A. R. Gehrke, S. A. Jaeger, E. T. Chan, G. Metzler, A. Vedenko, X. Chen, H. Kuznetsov, C. F. Wang, D. Coburn, D. E. Newburger, Q. Morris, T. R. Hughes, M. L. Bulyk, Science 2009, 324, 1720-1723.
S. Mukherjee, M. F. Berger, G. Jona, X. S. Wang, D. Muzzey, M. Snyder, R. A. Young, M. L. Bulyk, Nat. Genet. 2004, 36, 1331-1339;
A. Afek, H. Shi, A. Rangadurai, H. Sahay, A. Senitzki, S. Xhani, M. Fang, R. Salinas, Z. Mielko, M. A. Pufall, G. M. K. Poon, T. E. Haran, M. A. Schumacher, H. M. Al-Hashimi, R. Gordan, Nature 2020, 587, 291-296.
D. L. Solomon, B. Amati, H. Land, Nucleic Acids Res. 1993, 21, 5372-5376.
M. F. Berger, M. L. Bulyk, Nat. Protoc. 2009, 4, 393-411.
M. T. Weirauch, A. Cote, R. Norel, M. Annala, Y. Zhao, T. R. Riley, J. Saez-Rodriguez, T. Cokelaer, A. Vedenko, S. Talukder, DREAM5 Consortium, H. J. Bussemaker, Q. D. Morris, M. L. Bulyk, G. Stolovitzky, T. R. Hughes, Nat. Biotechnol. 2013, 31, 126-134.
Z. Li, S. Li, M. Luo, J. H. Jhong, W. Li, L. Yao, Y. Pang, Z. Wang, R. Wang, R. Ma, J. Yu, Y. Huang, X. Zhu, Q. Cheng, H. Feng, J. Zhang, C. Wang, J. B. Hsu, W. C. Chang, F. X. Wei, H. D. Huang, T. Y. Lee, Nucleic Acids Res. 2022, 50, D471-D479;
A. J. Whitmarsh, R. J. Davis, Cell. Mol. Life Sci. 2000, 57, 1172-1183.
C. Grandori, S. M. Cowley, L. P. James, R. N. Eisenman, Annu. Rev. Cell Dev. Biol. 2000, 16, 653-699.
S. K. Das, B. A. Lewis, D. Levens, Trends Cell Biol. 2023, 33, 235-246.
T. Bilbrough, E. Piemontese, O. Seitz, Chem. Soc. Rev. 2022, 51, 5691-5730.
B. Benassi, M. Fanciulli, F. Fiorentino, A. Porrello, G. Chiorino, M. Loda, G. Zupi, A. Biroccio, Mol. Cell 2006, 21, 509-519;
P. Macek, M. J. Cliff, K. J. Embrey, G. A. Holdgate, J. W. M. Nissink, S. Panova, J. P. Waltho, R. A. Davies, J. Biol. Chem. 2018, 293, 9301-9310.