Expression of Cytoskeletal Proteins (GFAP, Vimentin), Proapoptotic Protein (Caspase-3) and Protective Protein (S100) in the Epileptic Focus in Adults and Children with Drug-Resistant Temporal Lobe Epilepsy Associated with Focal Cortical Dysplasia.
Humans
Adult
Child
Epilepsy, Temporal Lobe
/ metabolism
Vimentin
/ genetics
Cytoskeletal Proteins
/ metabolism
Focal Cortical Dysplasia
Apoptosis Regulatory Proteins
/ metabolism
Caspase 3
/ metabolism
Epilepsy
/ metabolism
Drug Resistant Epilepsy
Temporal Lobe
/ metabolism
Glial Fibrillary Acidic Protein
/ metabolism
Retrospective Studies
GFAP
S100
adult
apoptosis
caspase-3
children
drug-resistant epilepsy
focal cortical dysplasia
immunohistochemistry
neurodegeneration
vimentin
Journal
International journal of molecular sciences
ISSN: 1422-0067
Titre abrégé: Int J Mol Sci
Pays: Switzerland
ID NLM: 101092791
Informations de publication
Date de publication:
23 Sep 2023
23 Sep 2023
Historique:
received:
29
07
2023
revised:
01
09
2023
accepted:
10
09
2023
medline:
23
10
2023
pubmed:
14
10
2023
entrez:
14
10
2023
Statut:
epublish
Résumé
The European Commission of the International League Against Epilepsy (ILAE) has identified glial mechanisms of seizures and epileptogenesis as top research priorities. The aim of our study was to conduct a comparative analysis of the expression levels of cytoskeletal proteins (glial fibrillar acidic protein (GFAP) and vimentin), protective protein S100, and proapoptotic caspase-3 protein in patients with drug-resistant epilepsy (DRE) associated with focal cortical dysplasia (FCD). We aimed to investigate how the expression levels of these proteins depend on age (both in children and adults), gender, and disease duration, using immunohistochemistry. Nonparametric statistical methods were employed for data analysis. In the epileptic focus area of the cortex and white matter in patients with FCD-associated temporal lobe DRE, a higher level of expression of these proteins was observed. Age and gender differences were found for vimentin and S100. In the early stages of disease development, there was a compensatory sequential increase in the expression of cytoskeletal and protective proteins. In patients with DRE, depending on the disease duration, patterns of development of neurodegeneration were noted, which is accompanied by apoptosis of gliocytes. These results provide insights into epilepsy mechanisms and may contribute to improving diagnostic and treatment approaches.
Identifiants
pubmed: 37833937
pii: ijms241914490
doi: 10.3390/ijms241914490
pmc: PMC10572279
pii:
doi:
Substances chimiques
Vimentin
0
Cytoskeletal Proteins
0
Apoptosis Regulatory Proteins
0
Caspase 3
EC 3.4.22.-
Glial Fibrillary Acidic Protein
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Références
Brain Sci. 2018 Feb 18;8(2):
pubmed: 29463007
Neurotox Res. 2021 Dec;39(6):1846-1858
pubmed: 34480735
Brain Res. 2009 Jul 28;1282:162-72
pubmed: 19501063
Glia. 2010 Aug;58(10):1208-19
pubmed: 20544856
Front Neurol. 2019 Nov 13;10:1149
pubmed: 31798512
Biochim Biophys Acta. 2011 May;1813(5):1092-104
pubmed: 21130124
Glia. 2001 Feb;33(2):131-42
pubmed: 11180510
Int J Mol Sci. 2022 Oct 19;23(20):
pubmed: 36293411
J Pak Med Assoc. 2011 Mar;61(3):276-81
pubmed: 21465945
Neurology. 1999 Sep 11;53(4):715-22
pubmed: 10489031
Biochemistry. 1987 May 19;26(10):2886-93
pubmed: 3111527
Int J Biochem Cell Biol. 2001 Jul;33(7):637-68
pubmed: 11390274
Neuroepidemiology. 2020;54(2):185-191
pubmed: 31852003
Biochimie. 2022 Jun;197:96-112
pubmed: 35151830
J Cereb Blood Flow Metab. 2005 Dec;25(12):1557-72
pubmed: 15889042
Brain Res Bull. 2009 Oct 28;80(4-5):224-32
pubmed: 19631259
Front Neuroanat. 2020 Jul 30;14:31
pubmed: 32848635
Cell Death Differ. 2018 Jun;25(6):1010-1024
pubmed: 29743560
Biophys Chem. 2010 Oct;151(3):181-6
pubmed: 20621410
Epilepsia. 2015 Nov;56(11):1687-95
pubmed: 26415919
Biotechnol Appl Biochem. 2022 Aug;69(4):1633-1645
pubmed: 34342377
J Neurol. 2019 Dec;266(12):3150-3159
pubmed: 31549200
Epilepsia. 2001 Jun;42(6):796-803
pubmed: 11422340
Lancet. 2006 Feb 11;367(9509):499-524
pubmed: 16473127
Brain Res Bull. 2018 Jan;136:139-156
pubmed: 28212850
Brain Res. 2021 May 1;1758:147303
pubmed: 33516813
Biomark Med. 2011 Oct;5(5):531-5
pubmed: 22003901
J Exp Biol. 2017 Apr 15;220(Pt 8):1400-1404
pubmed: 28167801
Front Neurosci. 2021 Jul 27;15:699176
pubmed: 34385902
Int J Physiol Pathophysiol Pharmacol. 2009 Mar 30;1(2):97-115
pubmed: 21383882
Eur J Neurosci. 2003 Sep;18(6):1486-96
pubmed: 14511328
Neurology. 2017 Jan 17;88(3):296-303
pubmed: 27986877
J Neurosci. 2004 May 26;24(21):5016-21
pubmed: 15163694
Neurobiol Dis. 2005 Aug;19(3):436-50
pubmed: 16023586
Proc Natl Acad Sci U S A. 2006 Sep 12;103(37):13606-11
pubmed: 16938869
Int J Dev Neurosci. 1996 Oct;14(6):739-48
pubmed: 8960981
J Neurochem. 2019 Jan;148(2):168-187
pubmed: 30144068
Acta Neuropathol. 1992;84(2):157-62
pubmed: 1523971
Neuroscientist. 2015 Feb;21(1):62-83
pubmed: 24609207
Front Cell Neurosci. 2019 Feb 12;13:44
pubmed: 30809131
J Neurochem. 1995 Jul;65(1):228-33
pubmed: 7790864
J Neurosci. 2019 Mar 6;39(10):1944-1963
pubmed: 30665946
J Neurosci. 2015 Feb 25;35(8):3330-45
pubmed: 25716834
Mol Med Rep. 2020 Oct;22(4):3504-3512
pubmed: 32945401
J Cell Sci. 2007 Apr 1;120(Pt 7):1267-77
pubmed: 17356066
J Neurosci. 2008 Mar 5;28(10):2394-408
pubmed: 18322086
PLoS One. 2017 Jul 10;12(7):e0180697
pubmed: 28700615
Epilepsia. 2022 Aug;63(8):1899-1919
pubmed: 35706131
Neural Regen Res. 2023 May;18(5):969-975
pubmed: 36254976
J Comp Neurol. 1971 Dec;143(4):481-90
pubmed: 4945394
Curr Med Chem. 2006;13(30):3719-31
pubmed: 17168733
Neurosci Lett. 2019 Jan 10;689:45-55
pubmed: 30025833
J Recept Signal Transduct Res. 2018 Oct - Dec;38(5-6):448-454
pubmed: 31038022
N Engl J Med. 2000 Feb 3;342(5):314-9
pubmed: 10660394