The E3 ligase Riplet promotes RIG-I signaling independent of RIG-I oligomerization.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 11 2023
Historique:
received: 27 03 2023
accepted: 25 10 2023
medline: 13 11 2023
pubmed: 12 11 2023
entrez: 11 11 2023
Statut: epublish

Résumé

RIG-I is an essential innate immune receptor that responds to infection by RNA viruses. The RIG-I signaling cascade is mediated by a series of post-translational modifications, the most important of which is ubiquitination of the RIG-I Caspase Recruitment Domains (CARDs) by E3 ligase Riplet. This is required for interaction between RIG-I and its downstream adapter protein MAVS, but the mechanism of action remains unclear. Here we show that Riplet is required for RIG-I signaling in the presence of both short and long dsRNAs, establishing that Riplet activation does not depend upon RIG-I filament formation on long dsRNAs. Likewise, quantitative Riplet-RIG-I affinity measurements establish that Riplet interacts with RIG-I regardless of whether the receptor is bound to RNA. To understand this, we solved high-resolution cryo-EM structures of RIG-I/RNA/Riplet complexes, revealing molecular interfaces that control Riplet-mediated activation and enabling the formulation of a unified model for the role of Riplet in signaling.

Identifiants

pubmed: 37951994
doi: 10.1038/s41467-023-42982-0
pii: 10.1038/s41467-023-42982-0
pmc: PMC10640585
doi:

Substances chimiques

Ubiquitin-Protein Ligases EC 2.3.2.27
DEAD Box Protein 58 EC 3.6.4.13
RNA, Double-Stranded 0

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

7308

Subventions

Organisme : NIAID NIH HHS
ID : R01 AI131518
Pays : United States

Informations de copyright

© 2023. The Author(s).

Références

Protein Sci. 2018 Jan;27(1):293-315
pubmed: 29067766
Sci Adv. 2019 Oct 02;5(10):eaax3641
pubmed: 31616790
J Struct Biol. 2015 Nov;192(2):216-21
pubmed: 26278980
Sci Rep. 2016 Jul 08;6:29263
pubmed: 27387525
J Biol Chem. 2009 Jan 9;284(2):807-17
pubmed: 19017631
Nat Commun. 2018 May 8;9(1):1820
pubmed: 29739942
Immunol Rev. 2021 Nov;304(1):154-168
pubmed: 34514601
Cell Rep. 2015 Aug 4;12(5):788-97
pubmed: 26212332
J Struct Biol. 2005 Oct;152(1):36-51
pubmed: 16182563
EMBO Rep. 2013 Sep;14(9):772-9
pubmed: 23897087
Life Sci Alliance. 2023 Aug 9;6(10):
pubmed: 37558422
Signal Transduct Target Ther. 2021 Aug 4;6(1):291
pubmed: 34344870
Mol Cell. 2021 Feb 4;81(3):599-613.e8
pubmed: 33373584
Nature. 2007 Apr 19;446(7138):916-920
pubmed: 17392790
Mol Syst Biol. 2011 Oct 11;7:539
pubmed: 21988835
Immunol Rev. 2022 Aug;309(1):12-24
pubmed: 35775361
J Comput Chem. 2004 Oct;25(13):1605-12
pubmed: 15264254
Mol Cell. 2023 Jan 5;83(1):90-104.e4
pubmed: 36521492
Mol Cell. 2022 Nov 3;82(21):4131-4144.e6
pubmed: 36272408
Nat Methods. 2022 Jun;19(6):679-682
pubmed: 35637307
Curr Opin Microbiol. 2014 Aug;20:76-81
pubmed: 24912143
Immunity. 2012 Jun 29;36(6):959-73
pubmed: 22705106
Acta Crystallogr D Struct Biol. 2017 Jun 1;73(Pt 6):469-477
pubmed: 28580908
EMBO J. 2016 Jun 1;35(11):1204-18
pubmed: 27154206
Cell. 2019 May 16;177(5):1187-1200.e16
pubmed: 31006531
IUCrJ. 2019 Jan 01;6(Pt 1):5-17
pubmed: 30713699
J Mol Biol. 2003 Oct 31;333(4):721-45
pubmed: 14568533
Nature. 2014 May 1;509(7498):110-4
pubmed: 24590070
Elife. 2015 Sep 15;4:
pubmed: 26371557
Acta Crystallogr D Biol Crystallogr. 2010 Apr;66(Pt 4):486-501
pubmed: 20383002
RNA. 2012 Dec;18(12):2118-27
pubmed: 23118418
Elife. 2018 Nov 09;7:
pubmed: 30412051
Acta Crystallogr D Struct Biol. 2018 Sep 1;74(Pt 9):814-840
pubmed: 30198894
Curr Opin Virol. 2022 Feb;52:30-38
pubmed: 34814102
Nucleic Acids Res. 1995 Jul 25;23(14):2677-84
pubmed: 7544462
Annu Rev Med. 2016;67:323-36
pubmed: 26526766
J Virol. 2015 Jun;89(11):6067-79
pubmed: 25810557
Nat Immunol. 2022 Feb;23(2):165-176
pubmed: 35105981
Nat Methods. 2017 Apr;14(4):331-332
pubmed: 28250466
Mol Cell. 2013 Sep 12;51(5):573-83
pubmed: 23993742
Nat Protoc. 2013 Nov;8(11):2281-2308
pubmed: 24157548
PLoS One. 2009 Jun 01;4(6):e5760
pubmed: 19484123
Mol Cell. 2014 Aug 21;55(4):511-23
pubmed: 25018021
Biochem Soc Trans. 2020 Dec 18;48(6):2615-2624
pubmed: 33170204
Nat Commun. 2017 May 04;8:15138
pubmed: 28469175
Cell Host Microbe. 2010 Dec 16;8(6):496-509
pubmed: 21147464
Sci Adv. 2018 Feb 21;4(2):e1701854
pubmed: 29492454
Nucleic Acids Res. 2014 Jul;42(Web Server issue):W320-4
pubmed: 24753421
STAR Protoc. 2023 Mar 14;4(2):102166
pubmed: 36920909

Auteurs

Wenshuai Wang (W)

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA.
Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520, USA.

Benjamin Götte (B)

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA.

Rong Guo (R)

Department of Chemistry, Yale University, New Haven, CT, 06511, USA.

Anna Marie Pyle (AM)

Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven, CT, 06511, USA. anna.pyle@yale.edu.
Howard Hughes Medical Institute, Yale University, New Haven, CT, 06520, USA. anna.pyle@yale.edu.

Articles similaires

The FGF/FGFR/c-Myc axis as a promising therapeutic target in multiple myeloma.

Arianna Giacomini, Sara Taranto, Giorgia Gazzaroli et al.
1.00
Humans Multiple Myeloma Receptors, Fibroblast Growth Factor Fibroblast Growth Factors Proto-Oncogene Proteins c-myc
Animals Lung India Sheep Transcriptome

Calcineurin inhibition enhances

Priyanka Das, Alejandro Aballay, Jogender Singh
1.00
Animals Caenorhabditis elegans Longevity Caenorhabditis elegans Proteins Calcineurin
1.00
Animals Mice Immunity, Innate Interneurons Synapses

Classifications MeSH