Evaluation of the potential impact on pharmacokinetics of various cytochrome P450 substrates of increasing IL-6 levels following administration of the T-cell bispecific engager glofitamab.
Journal
CPT: pharmacometrics & systems pharmacology
ISSN: 2163-8306
Titre abrégé: CPT Pharmacometrics Syst Pharmacol
Pays: United States
ID NLM: 101580011
Informations de publication
Date de publication:
Mar 2024
Mar 2024
Historique:
revised:
11
11
2023
received:
23
09
2023
accepted:
20
11
2023
medline:
18
3
2024
pubmed:
4
12
2023
entrez:
3
12
2023
Statut:
ppublish
Résumé
Glofitamab is a novel T cell bispecific antibody developed for treatment of relapsed-refractory diffuse large B cell lymphoma and other non-Hodgkin's lymphoma indications. By simultaneously binding human CD20-expressing tumor cells and CD3 on T cells, glofitamab induces tumor cell lysis, in addition to T-cell activation, proliferation, and cytokine release. Here, we describe physiologically-based pharmacokinetic (PBPK) modeling performed to assess the impact of glofitamab-associated transient increases in interleukin 6 (IL-6) on the pharmacokinetics of several cytochrome P450 (CYP) substrates. By refinement of a previously described IL-6 model and inclusion of in vitro CYP suppression data for CYP3A4, CYP1A2, and 2C9, a PBPK model was established in Simcyp to capture the induced IL-6 levels seen when glofitamab is administered at the intended dose and dosing regimen. Following model qualification, the PBPK model was used to predict the potential impact of CYP suppression on exposures of various CYP probe substrates. PBPK analysis predicted that, in the worst-case, the transient elevation of IL-6 would increase exposures of CYP3A4, CYP2C9, and CYP1A2 substrates by less than or equal to twofold. Increases for CYP3A4, CYP2C9, and CYP1A2 substrates were projected to be 1.75, 1.19, and 1.09-fold following the first administration and 2.08, 1.28, and 1.49-fold following repeated administrations. It is recommended that there are no restrictions on concomitant treatment with any other drugs. Consideration may be given for potential drug-drug interaction during the first cycle in patients who are receiving concomitant CYP substrates with a narrow therapeutic index via monitoring for toxicity or for drug concentrations.
Identifiants
pubmed: 38044486
doi: 10.1002/psp4.13091
pmc: PMC10941566
doi:
Substances chimiques
Cytochrome P-450 CYP1A2
EC 1.14.14.1
glofitamab
06P3KLK2J8
Interleukin-6
0
Cytochrome P-450 CYP3A
EC 1.14.14.1
Cytochrome P-450 CYP2C9
EC 1.14.13.-
Cytochrome P-450 Enzyme System
9035-51-2
Antibodies, Bispecific
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
396-409Informations de copyright
© 2023 The Authors. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.
Références
CPT Pharmacometrics Syst Pharmacol. 2019 Jul;8(7):489-499
pubmed: 31044521
Clin Pharmacokinet. 2015 Jan;54(1):117-27
pubmed: 25260695
J Pharm Sci. 2019 Jan;108(1):21-25
pubmed: 30385284
CPT Pharmacometrics Syst Pharmacol. 2016 Oct;5(10):505-515
pubmed: 27642087
Drug Metab Dispos. 2007 Sep;35(9):1687-93
pubmed: 17576808
Arch Intern Med. 2006 Sep 25;166(17):1871-7
pubmed: 17000944
Clin Pharmacol Ther. 2022 Mar;111(3):579-584
pubmed: 34496043
Clin Pharmacol Ther. 2020 May;107(5):1082-1115
pubmed: 31628859
J Hematol Oncol. 2018 Sep 24;11(1):121
pubmed: 30249264
Immunotargets Ther. 2019 Oct 29;8:43-52
pubmed: 31754614
Invest New Drugs. 2021 Jun;39(3):803-811
pubmed: 33462752
J Clin Pharmacol. 2020 Jul;60(7):915-930
pubmed: 32080863
Curr Drug Metab. 2008 Jun;9(5):384-94
pubmed: 18537575
Curr Pharmacol Rep. 2016;2:161-169
pubmed: 27226953
Clin Pharmacol Ther. 2011 May;89(5):735-40
pubmed: 21430660
CPT Pharmacometrics Syst Pharmacol. 2024 Mar;13(3):396-409
pubmed: 38044486
Clin Pharmacol Ther. 2013 Aug;94(2):260-8
pubmed: 23588308
Drug Metab Pers Ther. 2019 May 30;34(2):
pubmed: 31145690
Eur J Pharm Sci. 2011 Jun 14;43(3):160-73
pubmed: 21540107
Cancer J. 2014 Mar-Apr;20(2):119-22
pubmed: 24667956
Clin Pharmacol Ther. 2016 Nov;100(5):548-557
pubmed: 27367453
Clin Pharmacol Ther. 2019 Jan;105(1):229-241
pubmed: 29717476
Clin Pharmacol Ther. 2009 Apr;85(4):434-8
pubmed: 19212314
Drug Metab Dispos. 2011 Aug;39(8):1415-22
pubmed: 21555507
Eur J Drug Metab Pharmacokinet. 2021 Nov;46(6):779-791
pubmed: 34495458
Drug Metab Dispos. 2018 Feb;46(2):109-121
pubmed: 29117990
Clin Pharmacokinet. 2019 Jun;58(6):727-746
pubmed: 30729397
AAPS J. 2016 May;18(3):767-76
pubmed: 26961818
Xenobiotica. 2006 Jun;36(6):473-97
pubmed: 16769646
Drug Metab Dispos. 2018 Nov;46(11):1805-1816
pubmed: 30135241
Eur J Pharm Sci. 2010 Mar 18;39(5):298-309
pubmed: 20025966
Clin Pharmacokinet. 2013 Dec;52(12):1085-100
pubmed: 23818090
Biopharm Drug Dispos. 2015 Nov;36(8):507-19
pubmed: 26081137
Mult Scler. 2010 Dec;16(12):1443-52
pubmed: 20739337
J Card Fail. 2002 Oct;8(5):315-9
pubmed: 12411982
Clin Pharmacol Ther. 2018 Jul;104(1):88-110
pubmed: 29315504
AAPS J. 2019 Mar 18;21(3):42
pubmed: 30887238
CPT Pharmacometrics Syst Pharmacol. 2015 Jun;4(6):313-5
pubmed: 26225258
CPT Pharmacometrics Syst Pharmacol. 2015 Sep;4(9):507-15
pubmed: 26451330
Clin Pharmacol Ther. 2016 Sep;100(3):295-304
pubmed: 27264793
Acta Pharm Sin B. 2016 Sep;6(5):430-440
pubmed: 27909650
Clin Pharmacol Ther. 2018 Sep;104(3):505-514
pubmed: 29226313
Rheumatol Int. 2012 Sep;32(9):2601-4
pubmed: 22451032