Predictability of B cell clonal persistence and immunosurveillance in breast cancer.


Journal

Nature immunology
ISSN: 1529-2916
Titre abrégé: Nat Immunol
Pays: United States
ID NLM: 100941354

Informations de publication

Date de publication:
May 2024
Historique:
received: 20 02 2024
accepted: 15 03 2024
medline: 3 5 2024
pubmed: 3 5 2024
entrez: 2 5 2024
Statut: ppublish

Résumé

B cells and T cells are important components of the adaptive immune system and mediate anticancer immunity. The T cell landscape in cancer is well characterized, but the contribution of B cells to anticancer immunosurveillance is less well explored. Here we show an integrative analysis of the B cell and T cell receptor repertoire from individuals with metastatic breast cancer and individuals with early breast cancer during neoadjuvant therapy. Using immune receptor, RNA and whole-exome sequencing, we show that both B cell and T cell responses seem to coevolve with the metastatic cancer genomes and mirror tumor mutational and neoantigen architecture. B cell clones associated with metastatic immunosurveillance and temporal persistence were more expanded and distinct from site-specific clones. B cell clonal immunosurveillance and temporal persistence are predictable from the clonal structure, with higher-centrality B cell antigen receptors more likely to be detected across multiple metastases or across time. This predictability was generalizable across other immune-mediated disorders. This work lays a foundation for prioritizing antibody sequences for therapeutic targeting in cancer.

Identifiants

pubmed: 38698238
doi: 10.1038/s41590-024-01821-0
pii: 10.1038/s41590-024-01821-0
doi:

Substances chimiques

Receptors, Antigen, T-Cell 0
Receptors, Antigen, B-Cell 0
Antigens, Neoplasm 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't Research Support, N.I.H., Extramural

Langues

eng

Sous-ensembles de citation

IM

Pagination

916-924

Subventions

Organisme : Academy of Medical Sciences
ID : SGL028\1074
Pays : United Kingdom

Informations de copyright

© 2024. The Author(s).

Références

Hiam-Galvez, K. J., Allen, B. M. & Spitzer, M. H. Systemic immunity in cancer. Nat. Rev. Cancer 21, 345–359 (2021).
pubmed: 33837297 pmcid: 8034277 doi: 10.1038/s41568-021-00347-z
Tao, H. et al. Antitumor effector B cells directly kill tumor cells via the Fas/FasL pathway and are regulated by IL-10. Eur. J. Immunol. 45, 999–1009 (2015).
pubmed: 25545618 pmcid: 4414939 doi: 10.1002/eji.201444625
Bindea, G. et al. Spatiotemporal dynamics of intratumoral immune cells reveal the immune landscape in human cancer. Immunity 39, 782–795 (2013).
pubmed: 24138885 doi: 10.1016/j.immuni.2013.10.003
Garaud, S. et al. Tumor infiltrating B-cells signal functional humoral immune responses in breast cancer. JCI Insight 5, 129641 (2019).
pubmed: 31408436 doi: 10.1172/jci.insight.129641
Petitprez, F. et al. B cells are associated with survival and immunotherapy response in sarcoma. Nature 577, 556–560 (2020).
pubmed: 31942077 doi: 10.1038/s41586-019-1906-8
Alberts, E., Wall, I., Calado, D. P. & Grigoriadis, A. Immune crosstalk between lymph nodes and breast carcinomas, with a focus on B Cells. Front. Mol. Biosci. 8, 673051 (2021).
pubmed: 34124156 pmcid: 8194071 doi: 10.3389/fmolb.2021.673051
Helmink, B. A. et al. B cells and tertiary lymphoid structures promote immunotherapy response. Nature 577, 549–555 (2020).
pubmed: 31942075 pmcid: 8762581 doi: 10.1038/s41586-019-1922-8
Sammut, S. -J. et al. Multi-omic machine learning predictor of breast cancer therapy response. Nature 601, 623–629 (2022).
pubmed: 34875674 doi: 10.1038/s41586-021-04278-5
Norton, N. et al. Generation of HER2-specific antibody immunity during trastuzumab adjuvant therapy associates with reduced relapse in resected HER2 breast cancer. Breast Cancer Res. 20, 52 (2018).
pubmed: 29898752 pmcid: 6000975 doi: 10.1186/s13058-018-0989-8
Victora, G. D. & Nussenzweig, M. C. Germinal centers. Annu. Rev. Immunol. 30, 429–457 (2012).
pubmed: 22224772 doi: 10.1146/annurev-immunol-020711-075032
Hu, Q. et al. Atlas of breast cancer infiltrated B-lymphocytes revealed by paired single-cell RNA-sequencing and antigen receptor profiling. Nat. Commun. 12, 2186 (2021).
pubmed: 33846305 pmcid: 8042001 doi: 10.1038/s41467-021-22300-2
Aizik, L. et al. Antibody repertoire analysis of tumor-infiltrating B cells reveals distinct signatures and distributions across tissues. Front. Immunol. 12, 705381 (2021).
pubmed: 34349765 pmcid: 8327180 doi: 10.3389/fimmu.2021.705381
Tabuchi, Y. et al. Protective effect of naturally occurring anti-HER2 autoantibodies on breast cancer. Breast Cancer Res. Treat. 157, 55–63 (2016).
pubmed: 27113738 doi: 10.1007/s10549-016-3801-4
Bushey, R. T. et al. A therapeutic antibody for cancer, derived from single human B cells. Cell Rep. 15, 1505–1513 (2016).
pubmed: 27160908 pmcid: 4871760 doi: 10.1016/j.celrep.2016.04.038
Dunn, G. P., Bruce, A. T., Ikeda, H., Old, L. J. & Schreiber, R. D. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3, 991–998 (2002).
pubmed: 12407406 doi: 10.1038/ni1102-991
De Mattos-Arruda, L. et al. The genomic and immune landscapes of lethal metastatic breast cancer. Cell Rep. 27, 2690–2708 (2019).
pubmed: 31141692 pmcid: 6546974 doi: 10.1016/j.celrep.2019.04.098
GTEx Consortium. The GTEx Consortium atlas of genetic regulatory effects across human tissues. Science 369, 1318–1330 (2020).
doi: 10.1126/science.aaz1776
Dupic, T. et al. Immune fingerprinting through repertoire similarity. PLoS Genet. 17, e1009301 (2021).
pubmed: 33395405 pmcid: 7808657 doi: 10.1371/journal.pgen.1009301
Trück, J. et al. Identification of antigen-specific B cell receptor sequences using public repertoire analysis. J. Immunol. 194, 252–261 (2015).
pubmed: 25392534 doi: 10.4049/jimmunol.1401405
Rooney, M. S., Shukla, S. A., Wu, C. J., Getz, G. & Hacohen, N. Molecular and genetic properties of tumors associated with local immune cytolytic activity. Cell 160, 48–61 (2015).
pubmed: 25594174 pmcid: 4856474 doi: 10.1016/j.cell.2014.12.033
Danaher, P. et al. Gene expression markers of tumor infiltrating leukocytes. J. Immunother. Cancer 5, 18 (2017).
pubmed: 28239471 pmcid: 5319024 doi: 10.1186/s40425-017-0215-8
Becht, E. et al. Estimating the population abundance of tissue-infiltrating immune and stromal cell populations using gene expression. Genome Biol. 17, 218 (2016).
pubmed: 27765066 pmcid: 5073889 doi: 10.1186/s13059-016-1070-5
Cabrita, R. et al. Tertiary lymphoid structures improve immunotherapy and survival in melanoma. Nature 577, 561–565 (2020).
pubmed: 31942071 doi: 10.1038/s41586-019-1914-8
Sautès-Fridman, C., Petitprez, F., Calderaro, J. & Fridman, W. H. Tertiary lymphoid structures in the era of cancer immunotherapy. Nat. Rev. Cancer 19, 307–325 (2019).
pubmed: 31092904 doi: 10.1038/s41568-019-0144-6
Sethna, Z., Elhanati, Y., Callan, C. G., Walczak, A. M. & Mora, T. OLGA: fast computation of generation probabilities of B- and T-cell receptor amino acid sequences and motifs. Bioinformatics 35, 2974–2981 (2019).
pubmed: 30657870 pmcid: 6735909 doi: 10.1093/bioinformatics/btz035
Bashford-Rogers, R. J. M. et al. Analysis of the B cell receptor repertoire in six immune-mediated diseases. Nature 574, 122–126 (2019).
pubmed: 31554970 pmcid: 6795535 doi: 10.1038/s41586-019-1595-3
Priestley, P. et al. Pan-cancer whole-genome analyses of metastatic solid tumours. Nature 575, 210–216 (2019).
pubmed: 31645765 pmcid: 6872491 doi: 10.1038/s41586-019-1689-y
Siegel, M. B. et al. Integrated RNA and DNA sequencing reveals early drivers of metastatic breast cancer. J. Clin. Invest. 128, 1371–1383 (2018).
pubmed: 29480819 pmcid: 5873890 doi: 10.1172/JCI96153
Seay, H. R. et al. Tissue distribution and clonal diversity of the T and B cell repertoire in type 1 diabetes. JCI Insight 1, e88242 (2016).
pubmed: 27942583 pmcid: 5135280 doi: 10.1172/jci.insight.88242
Stern, J. N. H. et al. B cells populating the multiple sclerosis brain mature in the draining cervical lymph nodes. Sci. Transl. Med. 6, 248ra107 (2014).
pubmed: 25100741 pmcid: 4388137 doi: 10.1126/scitranslmed.3008879
Hanahan, D. Hallmarks of cancer: new dimensions. Cancer Discov. 12, 31–46 (2022).
pubmed: 35022204 doi: 10.1158/2159-8290.CD-21-1059
Dunn, G. P., Old, L. J. & Schreiber, R. D. The three Es of cancer immunoediting. Annu. Rev. Immunol. 22, 329–360 (2004).
pubmed: 15032581 doi: 10.1146/annurev.immunol.22.012703.104803
Axelrod, M. L., Cook, R. S., Johnson, D. B. & Balko, J. M. Biological consequences of MHC-II expression by tumor cells in cancer. Clin. Cancer Res. 25, 2392–2402 (2019).
pubmed: 30463850 doi: 10.1158/1078-0432.CCR-18-3200
McShane, A. N. & Malinova, D. The ins and outs of antigen uptake in B cells. Front. Immunol. 13, 892169 (2022).
pubmed: 35572544 pmcid: 9097226 doi: 10.3389/fimmu.2022.892169
Adler, L. N. et al. The other function: class II-restricted antigen presentation by B cells. Front. Immunol. 8, 319 (2017).
pubmed: 28386257 pmcid: 5362600 doi: 10.3389/fimmu.2017.00319
Zou, Y. et al. The single‐cell landscape of intratumoral heterogeneity and the immunosuppressive microenvironment in liver and brain metastases of breast cancer. Adv. Sci. 10, 2203699 (2023).
doi: 10.1002/advs.202203699
Chen, Y. et al. Single-cell sequencing and bulk RNA data reveal the tumor microenvironment infiltration characteristics of disulfidptosis related genes in breast cancer. J. Cancer Res. Clin. Oncol. https://doi.org/10.1007/s00432-023-05109-y (2023).
Gonzalez-Ericsson, P. I. et al. Tumor-specific major histocompatibility-II expression predicts benefit to anti-PD-1/L1 therapy in patients with HER2-negative primary breast cancer. Clin. Cancer Res. 27, 5299–5306 (2021).
pubmed: 34315723 pmcid: 8792110 doi: 10.1158/1078-0432.CCR-21-0607
Park, I. A. et al. Expression of the MHC class II in triple-negative breast cancer is associated with tumor-infiltrating lymphocytes and interferon signaling. PLoS ONE 12, e0182786 (2017).
pubmed: 28817603 pmcid: 5560630 doi: 10.1371/journal.pone.0182786
Yanguas, A. et al. ICAM-1-LFA-1-dependent CD8
pubmed: 30258446 pmcid: 6143661 doi: 10.3389/fimmu.2018.02084
Rawat, K., Tewari, A. & Jakubzick, C. V. A critical role for B cells in cancer immune surveillance. Preprint at bioRxiv https://doi.org/10.1101/2020.09.19.304790 (2020).
Rawat, K., Tewari, A., Morrisson, M. J., Wager, T. D. & Jakubzick, C. V. Redefining innate natural antibodies as important contributors to anti-tumor immunity. eLife 10, e69713 (2021).
pubmed: 34608861 pmcid: 8547949 doi: 10.7554/eLife.69713
Miho, E., Roškar, R., Greiff, V. & Reddy, S. T. Large-scale network analysis reveals the sequence space architecture of antibody repertoires. Nat. Commun. 10, 1321 (2019).
pubmed: 30899025 pmcid: 6428871 doi: 10.1038/s41467-019-09278-8
Ross, E. M. & Markowetz, F. OncoNEM: inferring tumor evolution from single-cell sequencing data. Genome Biol. 17, 69 (2016).
pubmed: 27083415 pmcid: 4832472 doi: 10.1186/s13059-016-0929-9
Kawaguchi, S., Higasa, K., Shimizu, M., Yamada, R. & Matsuda, F. HLA-HD: an accurate HLA typing algorithm for next-generation sequencing data. Hum. Mutat. 38, 788–797 (2017).
pubmed: 28419628 doi: 10.1002/humu.23230
Racle, J. et al. Robust prediction of HLA class II epitopes by deep motif deconvolution of immunopeptidomes. Nat. Biotechnol. 37, 1283–1286 (2019).
pubmed: 31611696 doi: 10.1038/s41587-019-0289-6
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15–21 (2013).
pubmed: 23104886 doi: 10.1093/bioinformatics/bts635
Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2015).
pubmed: 25260700 doi: 10.1093/bioinformatics/btu638
Ayers, M. et al. IFN-γ-related mRNA profile predicts clinical response to PD-1 blockade. J. Clin. Invest. 127, 2930–2940 (2017).
pubmed: 28650338 pmcid: 5531419 doi: 10.1172/JCI91190
Hänzelmann, S., Castelo, R. & Guinney, J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics 14, 7 (2013).
pubmed: 23323831 pmcid: 3618321 doi: 10.1186/1471-2105-14-7
Liberzon, A. et al. The Molecular Signatures Database (MSigDB) hallmark gene set collection. Cell Syst. 1, 417–425 (2015).
pubmed: 26771021 pmcid: 4707969 doi: 10.1016/j.cels.2015.12.004
Galson, J. D. et al. Deep sequencing of B cell receptor repertoires from COVID-19 patients reveals strong convergent immune signatures. Front. Immunol. 11, 605170 (2020).
pubmed: 33384691 pmcid: 7769841 doi: 10.3389/fimmu.2020.605170
Vander Heiden, J. A. et al. pRESTO: a toolkit for processing high-throughput sequencing raw reads of lymphocyte receptor repertoires. Bioinformatics 30, 1930–1932 (2014).
doi: 10.1093/bioinformatics/btu138
Edgar, R. C. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461 (2010).
pubmed: 20709691 doi: 10.1093/bioinformatics/btq461
Ye, J., Ma, N., Madden, T. L. & Ostell, J. M. IgBLAST: an immunoglobulin variable domain sequence analysis tool. Nucleic Acids Res. 41, W34–W40 (2013).
pubmed: 23671333 pmcid: 3692102 doi: 10.1093/nar/gkt382
Lefranc, M. -P. et al. IMGT, the international ImMunoGeneTics information system. Nucleic Acids Res. 37, D1006–D1012 (2009).
pubmed: 18978023 doi: 10.1093/nar/gkn838
Bashford-Rogers, R. J. M. et al. Eye on the B-ALL: B-cell receptor repertoires reveal persistence of numerous B-lymphoblastic leukemia subclones from diagnosis to relapse. Leukemia 30, 2312–2321 (2016).
pubmed: 27211266 pmcid: 5155029 doi: 10.1038/leu.2016.142
Dunbar, J. et al. SAbDab: the structural antibody database. Nucleic Acids Res. 42, D1140–D1146 (2014).
pubmed: 24214988 doi: 10.1093/nar/gkt1043
Swindells, M. B. et al. abYsis: integrated antibody sequence and structure-management, analysis, and prediction. J. Mol. Biol. 429, 356–364 (2017).
pubmed: 27561707 doi: 10.1016/j.jmb.2016.08.019
Vita, R. et al. The Immune Epitope Database (IEDB): 2018 update. Nucleic Acids Res. 47, D339–D343 (2019).
pubmed: 30357391 doi: 10.1093/nar/gky1006
Galili, T. dendextend: an R package for visualizing, adjusting and comparing trees of hierarchical clustering. Bioinformatics 31, 3718–3720 (2015).
pubmed: 26209431 pmcid: 4817050 doi: 10.1093/bioinformatics/btv428
Scrucca, L., Fop, M., Murphy, T. B. & Raftery, A. E. mclust 5: clustering, classification and density estimation using Gaussian finite mixture models. R J. 8, 289–317 (2016).
pubmed: 27818791 pmcid: 5096736 doi: 10.32614/RJ-2016-021
Schliep, K. P. phangorn: phylogenetic analysis in R. Bioinformatics 27, 592–593 (2011).
pubmed: 21169378 doi: 10.1093/bioinformatics/btq706
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2019).
pubmed: 30016406 doi: 10.1093/bioinformatics/bty633
Song, L. et al. TRUST4: immune repertoire reconstruction from bulk and single-cell RNA-seq data. Nat. Methods 18, 627–630 (2021).
pubmed: 33986545 pmcid: 9328942 doi: 10.1038/s41592-021-01142-2
Corrie, B. D. et al. iReceptor: a platform for querying and analyzing antibody/B-cell and T-cell receptor repertoire data across federated repositories. Immunol. Rev. 284, 24–41 (2018).
pubmed: 29944754 pmcid: 6344122 doi: 10.1111/imr.12666

Auteurs

Stephen-John Sammut (SJ)

Breast Cancer Now Toby Robins Research Centre, The Institute of Cancer Research, London, UK. stephen-john.sammut@icr.ac.uk.
The Royal Marsden Hospital NHS Foundation Trust, London, UK. stephen-john.sammut@icr.ac.uk.

Jacob D Galson (JD)

Alchemab Therapeutics, Whittlesford, UK.

Ralph Minter (R)

Alchemab Therapeutics, Whittlesford, UK.

Bo Sun (B)

Wellcome Centre for Human Genetics, Oxford, UK.
Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, UK.

Suet-Feung Chin (SF)

Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.

Leticia De Mattos-Arruda (L)

IrsiCaixa, Germans Trias i Pujol University Hospital, Badalona, Spain.
Germans Trias i Pujol Research Institute (IGTP), Badalona, Spain.

Donna K Finch (DK)

Alchemab Therapeutics, Whittlesford, UK.

Sebastian Schätzle (S)

Alchemab Therapeutics, Whittlesford, UK.

Jorge Dias (J)

Alchemab Therapeutics, Whittlesford, UK.

Oscar M Rueda (OM)

MRC Biostatistics Unit, University of Cambridge, Cambridge, UK.

Joan Seoane (J)

Vall d'Hebron Institute of Oncology (VHIO), Vall d'Hebron University Hospital, Institució Catalana de Recerca i Estudis Avançats (ICREA), Universitat Autònoma de Barcelona (UAB), CIBERONC, Barcelona, Spain.

Jane Osbourn (J)

Alchemab Therapeutics, Whittlesford, UK.

Carlos Caldas (C)

School of Clinical Medicine, University of Cambridge, Cambridge, UK. cc234@cam.ac.uk.

Rachael J M Bashford-Rogers (RJM)

Wellcome Centre for Human Genetics, Oxford, UK. rachael.bashford-rogers@bioch.ox.ac.uk.
Department of Biochemistry, University of Oxford, Oxford, UK. rachael.bashford-rogers@bioch.ox.ac.uk.
Oxford Cancer Centre, Oxford, UK. rachael.bashford-rogers@bioch.ox.ac.uk.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH