High-density genetic map construction and QTL mapping of a zigzag-shaped stem trait in tea plant (Camellia sinensis).
Candidate genes
Genetic map
QTL
Tea plant
Zigzag-shaped stem trait
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
09 May 2024
09 May 2024
Historique:
received:
09
03
2024
accepted:
29
04
2024
medline:
10
5
2024
pubmed:
10
5
2024
entrez:
9
5
2024
Statut:
epublish
Résumé
The highly unique zigzag-shaped stem phenotype in tea plants boasts significant ornamental value and is exceptionally rare. To investigate the genetic mechanism behind this trait, we developed BC
Identifiants
pubmed: 38724900
doi: 10.1186/s12870-024-05082-9
pii: 10.1186/s12870-024-05082-9
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
382Subventions
Organisme : the National Key Research and Development Program of China
ID : 2021YFD1200200
Organisme : Zhejiang Science and Technology Major Program on Agricultural New Variety Breeding-Tea Plant
ID : 2021C02067-6
Organisme : the Fundamental Research Fund for Tea Research Institute of the Chinese Academy of Agricultural Sciences
ID : 1610212022009
Informations de copyright
© 2024. The Author(s).
Références
Chen L, Apostolides Z, Chen ZM. Global tea breeding: achievements, challenges and perspectives. Hangzhou: Springer-Zhejiang University; 2012.
doi: 10.1007/978-3-642-31878-8
Ma CL, Chen L, Wang XC, Jin JQ, Ma JQ, Yao MZ, et al. Differential expression analysis of different albescent stages of ‘Anji Baicha’ (Camellia sinensis (L.) O. Kuntze) using cDNA microarray. Sci Hortic. 2012;148:246–54.
doi: 10.1016/j.scienta.2012.09.033
Jiang LH, Shen XJ, Shoji T, Kanda T, Zhou JC, Zhao LM. Characterization and activity of anthocyanins in zijuan tea (Camellia sinensis var. Kitamura). J Agri Food Chem. 2013;61:3306–10.
doi: 10.1021/jf304860u
Jin JQ, Chai YF, Liu YF, Zhang J, Yao MZ, Chen L. Hongyacha, a naturally caffeine-free tea plant from Fujian. China J Agri Food Chem. 2018;66:11311–1131.
doi: 10.1021/acs.jafc.8b03433
Zheng TC, Li LL, Zhang QX. Advances in research on tortuous traits of plants. Euphytica. 2018;214:224.
doi: 10.1007/s10681-018-2306-0
Cao HL, Wang FQ, Lin HZ, Ye YJ, Zheng YC, Li JM, et al. Transcriptome and metabolite analyses provide insights into zigzag-shaped stem formation in tea plants (Camellia sinensis). BMC Plant Biol. 2020;20:98.
pubmed: 32131737
pmcid: 7057490
doi: 10.1186/s12870-020-2311-z
Yu MN, Zhang R, Liu YJ, Gu Y, Shang GX, Fan YH, et al. Quantitative trait locus mapping and transcriptome analysis reveal candidate genes for a stem bending mutant in rapeseed (Brassica napus). Industrial Crop Prod. 2022;177:114456.
doi: 10.1016/j.indcrop.2021.114456
Wang ZH, Huang R, Moon DG, Ercisli S, Chen L. Achievements and prospects of QTL mapping and beneficial genes and alleles mining for important quality and agronomic traits in tea plant (Camellia sinensis). Beverage Plant Res. 2023;3:22.
doi: 10.48130/BPR-2023-0022
Hashemi FSG, Rafii MY, Ismail MR, Mohamed MTM, Rahim HA, et al. The genetic and molecular origin of natural variation for the fragrance trait in an elite Malaysian aromatic rice through quantitative trait loci mapping using SSR and gene-based markers. Gene. 2015;55:101–7.
doi: 10.1016/j.gene.2014.10.048
Zheng XQ, Li QS, Xiang LP, Liang YR. Recent advances in volatiles of tea. Molecules. 2016;21:338.
pubmed: 26978340
pmcid: 6273888
doi: 10.3390/molecules21030338
Grattapaglia D, Sederoff R. Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD markers. Genetics. 1994;137:1121–37.
pubmed: 7982566
pmcid: 1206059
doi: 10.1093/genetics/137.4.1121
Hackett CA, Wachira FN, Paul S, Powell W, Waugh R. Construction of a genetic linkage map for Camellia sinensis (tea). Heredity. 2000;85:346–55.
pubmed: 11122412
doi: 10.1046/j.1365-2540.2000.00769.x
Huang JA, Li JX, Huang YH, et al. Construction of AFLP molecular markers linkage map in tea plant. J Tea Sci. 2005;25:7–15.
Ota S, Tanaka J. RAPD-based linkage mapping using F
Huang FP, Liang YR, Lu JL, et al. Genetic mapping of first generation of backcross in tea by RAPD and ISSR markers. J Tea Sci. 2006;26:171–6.
Taniguchi F, Furukawa K, Ota-Metoku SS, Yamaguchi N, Ujihara T, Kono I, et al. Construction of a high-density reference linkage map of tea (Camellia sinensis). Breed Sci. 2012;62:263–73.
pubmed: 23226087
pmcid: 3501944
doi: 10.1270/jsbbs.62.263
Tan LQ, Wang LY, Wei K, Zhang CC, Wu LY, Qi GN, et al. Floral transcriptome sequencing for SSR marker development and linkage map construction in the tea plant (Camellia sinensis). PLoS ONE. 2013;8:e81611.
pubmed: 24303059
pmcid: 3841144
doi: 10.1371/journal.pone.0081611
Ma JQ, Yao MZ, Ma CL, Wang XC, Jin JQ, Wang XM, et al. Construction of a SSR-based genetic map and identification of QTLs for catechins content in tea plant (Camellia sinensis). PLoS ONE. 2014;9:e93131.
pubmed: 24676054
pmcid: 3968092
doi: 10.1371/journal.pone.0093131
Ma JQ, Huang L, Ma CL, Jin JQ, Li CF, Wang RK, et al. Large-scale SNP discovery and genotyping for constructing a high-density genetic map of tea plant using specific-locus amplified fragment sequencing (SLAF-seq). PLoS ONE. 2015;10:e0128798.
pubmed: 26035838
pmcid: 4452719
doi: 10.1371/journal.pone.0128798
Huang R, Wang JY, Yao MZ, Ma CL, Chen L. Quantitative trait loci mapping for free amino acid content using an albino population and SNP markers provides insight into the genetic improvement of tea plants. Hortic Res. 2022;9:uhab029.
pubmed: 35040977
pmcid: 8788373
doi: 10.1093/hr/uhab029
An YL, Chen LB, Tao LL, Liu SR, Wei CL. QTL mapping for leaf area of tea plants (Camellia sinensis) based on a high-quality genetic map constructed by whole genome resequencing. Front Plant Sci. 2021;12:705285.
pubmed: 34394160
pmcid: 8358608
doi: 10.3389/fpls.2021.705285
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N et al. (2009). The sequence alignment/map format and SAMtools. Bioinformatics. 2009; 25: 2078–2079.
Liu SR, An YL, Tong W, Qin X, Samarina L, Guo R et al. (2019). Characterization of genome-wide genetic variations between two varieties of tea plant (Camellia sinensis) and development of InDel markers for genetic research. BMC Genomics. 2019; 20:935.
McKenna A, Hanna M, Banks E. The genome analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Margarido GRA, Souza AP, Garcia AAF. OneMap: Software for genetic mapping in outcrossing species. Hereditas. 2007;144:78–9.
pubmed: 17663699
doi: 10.1111/j.2007.0018-0661.02000.x
Liu DD, Wang JY, Tang RJ, Chen JD, Liu Z, Chen L, et al. Transcriptomic and metabolomic analyses provide insights into an aberrant tissue of Tea Plant (Camellia sinensis). Front Plant Sci. 2021;12:73065.
Cui SY, Meng QC, Gai JY, Yu DY. Gene mapping of brachytic stem and its effects on yield-related traits in soybean. Aust J Agric Res. 2017;58:774–9.
doi: 10.1071/AR06358
Zheng HY, von Mollard GF, Kovaleva V, Stevens TH, Raikhel NV. The plant vesicle-associated SNARE AtVT11a likely mediates vesicle transport from the trans-golgi network to the prevacuolar compartment. Mol Bio Cell. 1999;10:2251–64.
doi: 10.1091/mbc.10.7.2251
Sopian T, Jiao F, Hirata Y. Characterization of mulberry mutant growth response to gibberellin and abscisic acid application and its molecular analysis. J Insect Biotechnol Sericology. 2009;78:23–32.
CORTÉS-MARTÍNE NE, VALADEZ-MOCTEZUM E, ZELAYA-MOLINA LX, Zelaya-Molina X. A new phytoplasma associated with a zigzag line pattern in leaves of Lilium spp. in Mexico. Bull Insectol. 2007;60:283–4.
Huang S, Ashley DA, Boerma HR. Light intensity, row spacing, and photoperiod effects on expression of brachytic stem in soybean. Crop Sci. 1993;33:29–37.
doi: 10.2135/cropsci1993.0011183X003300010003x
Adams PA, Weaver DB. Brachytic stem trait, row spacing and population effects on soybean yield. Crop Sci. 1998;38:750–5.
doi: 10.2135/cropsci1998.0011183X003800030022x
Kilen TC, Hartwig EE. Short internode character in soybeans and its inheritance. Crop Sci. 1975;15:878–878.
doi: 10.2135/cropsci1975.0011183X001500060043x
Kato T, Morita MT, Fukaki H, Yamauchi Y, Uehara M, Niihama M, et al. SGR2, a phospholipase-like protein, and ZIG/SGR4, a SNARE, are involved in the shoot gravitropism of Arabidopsis. Plant Cell. 2002;14:33–46.
pubmed: 11826297
pmcid: 150549
doi: 10.1105/tpc.010215
Hashiguchi Y, Niihama M, Takahashi T, Nakano A, Tasaka M, Morita MT. Loss-of-function mutations of retromer large subunit genes suppress the phenotype of an Arabidopsis zig mutant that lacks Qb-SNARE VTI11. Plant Cell. 2010;22(1):159–72.
pubmed: 20086190
pmcid: 2828691
doi: 10.1105/tpc.109.069294
Wang ZT, Zhang Z, Tang HX, Zhang Q, Zhou GF, Li XG. High-density genetic map construction and QTL mapping of leaf and needling traits in Ziziphus jujuba Mill. Front. Plant Sci. 2018;10:1424.
Zhang XF, Wang GY, Dong TT, Chen B, Du HS, Bao C. High-density genetic map construction and QTL mapping of first flower node in pepper (Capsicum annuum L). BMC Plant Biol. 2019;19:167.
pubmed: 31035914
pmcid: 6489210
doi: 10.1186/s12870-019-1753-7
Tan LQ, Cui D, Wang LB, Liu QL, Zhang DY, Hu XL, et al. Genetic analysis of the early bud flush trait of tea plants (Camellia sinensis) in the cultivar ‘Emei Wenchun’ and its open-pollinated offspring. Hortic Res. 2022;9:uhac086.
pubmed: 35694722
pmcid: 9178331
doi: 10.1093/hr/uhac086
Zhang Y. Performance, gene mapping and transcriptome profile of brachytic stem in soybean. Nanjing: Nanjing Agricultural Univ. 2015; 19–29.
Rose JKC, Braam J, Fry SC, Nishitani K. The XTH family of enzymes involved in xyloglucan endotransglucosylation and endohydrolysis: current perspectives and a new unifying nomenclature. Plant Cell Physiol. 2002;43:1421–35.
pubmed: 12514239
doi: 10.1093/pcp/pcf171
Van Sandt VS, Suslov D, Verbelen JP, Vissenberg K. Xyloglucan endotransglucosylase activity loosens a plant cell wall. Ann Bot. 2007;100:1467–73.
pubmed: 17916584
pmcid: 2759230
doi: 10.1093/aob/mcm248
Hyodo H, Yamakawa S, Takeda Y, Tsuduki M, Yokota A, Nishitani K, et al. Active gene expression of a xyloglucan endotransglucosylase/hydrolase gene, XTH9, ininflorescence apices is related to cell elongation in Arabidopsis thaliana. Plant Mol Biol. 2003;52:473–82.
pubmed: 12856951
doi: 10.1023/A:1023904217641
Majda M, Robert S. The role of auxin in cell wall expansion. Int J Mol Sci. 2018;19:951.
pubmed: 29565829
pmcid: 5979272
doi: 10.3390/ijms19040951
Ding X, Liu BW, Sun XZ, Sun X, Zheng CS. New functions of CIPK gene family are continue to emerging. Mol Biol Rep. 2022;49:6647–58.
pubmed: 35229240
doi: 10.1007/s11033-022-07255-x
Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D. CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J. 2009;58:778–90.
pubmed: 19187042
doi: 10.1111/j.1365-313X.2009.03812.x