Variations and trade-offs in leaf and culm functional traits among 77 woody bamboo species.

Biogeochemical niche Common garden Leaf economics spectrum Phylogeny Plant functional traits Trait trade-offs Woody bamboo

Journal

BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807

Informations de publication

Date de publication:
10 May 2024
Historique:
received: 04 03 2024
accepted: 05 05 2024
medline: 10 5 2024
pubmed: 10 5 2024
entrez: 9 5 2024
Statut: epublish

Résumé

Woody bamboos are the only diverse large perennial grasses in mesic-wet forests and are widely distributed in the understory and canopy. The functional trait variations and trade-offs in this taxon remain unclear due to woody bamboo syndromes (represented by lignified culm of composed internodes and nodes). Here, we examined the effects of heritable legacy and occurrence site climates on functional trait variations in leaf and culm across 77 woody bamboo species in a common garden. We explored the trade-offs among leaf functional traits, the connection between leaf nitrogen (N), phosphorus (P) concentrations and functional niche traits, and the correlation of functional traits between leaves and culms. The Bayesian mixed models reveal that the combined effects of heritable legacy (phylogenetic distances and other evolutionary processes) and occurrence site climates accounted for 55.10-90.89% of the total variation among species for each studied trait. The standardized major axis analysis identified trade-offs among leaf functional traits in woody bamboo consistent with the global leaf economics spectrum; however, compared to non-bamboo species, the woody bamboo exhibited lower leaf mass per area but higher N, P concentrations and assimilation, dark respiration rates. The canonical correlation analysis demonstrated a positive correlation (ρ = 0.57, P-value < 0.001) between leaf N, P concentrations and morphophysiology traits. The phylogenetic principal components and trait network analyses indicated that leaf and culm traits were clustered separately, with leaf assimilation and respiration rates associated with culm ground diameter. Our study confirms the applicability of the leaf economics spectrum and the biogeochemical niche in woody bamboo taxa, improves the understanding of woody bamboo leaf and culm functional trait variations and trade-offs, and broadens the taxonomic units considered in plant functional trait studies, which contributes to our comprehensive understanding of terrestrial forest ecosystems.

Sections du résumé

BACKGROUND BACKGROUND
Woody bamboos are the only diverse large perennial grasses in mesic-wet forests and are widely distributed in the understory and canopy. The functional trait variations and trade-offs in this taxon remain unclear due to woody bamboo syndromes (represented by lignified culm of composed internodes and nodes). Here, we examined the effects of heritable legacy and occurrence site climates on functional trait variations in leaf and culm across 77 woody bamboo species in a common garden. We explored the trade-offs among leaf functional traits, the connection between leaf nitrogen (N), phosphorus (P) concentrations and functional niche traits, and the correlation of functional traits between leaves and culms.
RESULTS RESULTS
The Bayesian mixed models reveal that the combined effects of heritable legacy (phylogenetic distances and other evolutionary processes) and occurrence site climates accounted for 55.10-90.89% of the total variation among species for each studied trait. The standardized major axis analysis identified trade-offs among leaf functional traits in woody bamboo consistent with the global leaf economics spectrum; however, compared to non-bamboo species, the woody bamboo exhibited lower leaf mass per area but higher N, P concentrations and assimilation, dark respiration rates. The canonical correlation analysis demonstrated a positive correlation (ρ = 0.57, P-value < 0.001) between leaf N, P concentrations and morphophysiology traits. The phylogenetic principal components and trait network analyses indicated that leaf and culm traits were clustered separately, with leaf assimilation and respiration rates associated with culm ground diameter.
CONCLUSION CONCLUSIONS
Our study confirms the applicability of the leaf economics spectrum and the biogeochemical niche in woody bamboo taxa, improves the understanding of woody bamboo leaf and culm functional trait variations and trade-offs, and broadens the taxonomic units considered in plant functional trait studies, which contributes to our comprehensive understanding of terrestrial forest ecosystems.

Identifiants

pubmed: 38724946
doi: 10.1186/s12870-024-05108-2
pii: 10.1186/s12870-024-05108-2
doi:

Substances chimiques

Nitrogen N762921K75
Phosphorus 27YLU75U4W

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

387

Subventions

Organisme : Sichuan Province Science and Technology Support Program
ID : 2021YFYZ0006
Organisme : Forest Ecosystem Improvement in the Upper Reaches of Yangtze River Basin Program of World Bank
ID : 510201202038467
Organisme : China Scholarship Council
ID : no. 202206910036
Organisme : Natural Science Foundation of Sichuan Province
ID : 2022NSFSC1134
Organisme : Ministerio de Ciencia y Tecnología
ID : PID2020115770RB-I
Organisme : Ministerio de Ciencia e Innovación
ID : AEI/10.13039/501100011033
Organisme : Catalan government
ID : SGR2021-1333
Organisme : Fundación Ramón Areces
ID : CIVP20A6621

Informations de copyright

© 2024. The Author(s).

Références

Soreng RJ, Peterson PM, Romaschenko K, Davidse G, Teisher JK, Clark LG, et al. A worldwide phylogenetic classification of the Poaceae (Gramineae) II: an update and a comparison of two 2015 classifications. J Syst Evol. 2017;55:259–90.
doi: 10.1111/jse.12262
Phylogeny GB. An updated tribal and subtribal classification of the bamboos (Poaceae: Bambusoideae). In: Bamboo Science and Culture: The Journal of the American Bamboo Society. 2012. pp. 1–10.
Ahmad Z, Upadhyay A, Ding Y, Emamverdian A, Shahzad A, Bamboo. Origin, Habitat, distributions and global prospective. In: Ahmad Z, Ding Y, Shahzad A, editors. Biotechnological advances in Bamboo. Singapore: Springer; 2021. pp. 1–31.
doi: 10.1007/978-981-16-1310-4
Fadrique B, Veldman JW, Dalling JW, Clark LG, Montti L, Ruiz-Sanchez E, et al. Guidelines for including bamboos in tropical ecosystem monitoring. Biotropica. 2020;52:427–43.
doi: 10.1111/btp.12737
Fadrique B, Santos-Andrade P, Farfan-Rios W, Salinas N, Silman M, Feeley KJ. Reduced tree density and basal area in Andean forests are associated with bamboo dominance. Ecol Manage. 2021;480 July 2020:118648.
Montti L, Villagra M, Campanello PI, Gatti MG, Goldstein G. Functional traits enhance invasiveness of bamboos over co-occurring tree saplings in the semideciduous Atlantic Forest. Acta Oecol. 2014;54:36–44.
doi: 10.1016/j.actao.2013.03.004
Christmann T, Rosado BHP, Delhaye G, Matos IS, Drummond JS, Roland HL, et al. Functional assembly of tropical montane tree islands in the Atlantic Forest is shaped by stress tolerance, bamboo presence, and facilitation. Ecol Evol. 2021;11:10164–77.
pubmed: 34367567 pmcid: 8328411 doi: 10.1002/ece3.7824
Lima RAF, Rother DC, Muler AE, Lepsch IF, Rodrigues RR. Bamboo overabundance alters forest structure and dynamics in the Atlantic Forest hotspot. Biol Conserv. 2012;147:32–9.
doi: 10.1016/j.biocon.2012.01.015
Triplett JK, Clark LG, Fisher AE, Wen J. Independent allopolyploidization events preceded speciation in the temperate and tropical woody bamboos. New Phytol. 2014;204:66–73.
pubmed: 25103958 doi: 10.1111/nph.12988
Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–7.
pubmed: 15103368 doi: 10.1038/nature02403
Fadrique B, Baraloto C, Bravo-Avila CH, Feeley KJ. Bamboo climatic tolerances are decoupled from leaf functional traits across an andean elevation gradient. Oikos. 2022;2022:1–13.
doi: 10.1111/oik.09229
Asner GP, Martin RE. Contrasting leaf chemical traits in tropical lianas and trees: implications for future forest composition. Ecol Lett. 2012;15:1001–7.
pubmed: 22690783 doi: 10.1111/j.1461-0248.2012.01821.x
Strömberg CAE. Evolution of grasses and grassland ecosystems. Annu Rev Earth Planet Sci. 2011;39:517–44.
doi: 10.1146/annurev-earth-040809-152402
Peixoto MM, Sage TL, Busch FA, Pacheco HDN, Moraes MG, Portes TA, et al. Elevated efficiency of C3 photosynthesis in bamboo grasses: a possible consequence of enhanced refixation of photorespired CO2. GCB Bioenergy. 2021;13:941–54.
doi: 10.1111/gcbb.12819
Sun J, Li J, Koyama K, Hu D, Zhong Q, Cheng D. The morphology and nutrient content drive the leaf carbon capture and economic trait variations in subtropical bamboo forest. Front Plant Sci. 2023;14:1–9.
Motomura H, Hikosaka K, Suzuki M. Relationships between photosynthetic activity and silica accumulation with ages of leaf in Sasa veitchii (Poaceae, Bambusoideae). Ann Bot. 2008;101:463–8.
pubmed: 18045795 doi: 10.1093/aob/mcm301
Wang M, Mori S, Kurosawa Y, Ferrio JP, Yamaji K, Koyama K. Consistent scaling of whole-shoot respiration between Moso bamboo (Phyllostachys pubescens) and trees. J Plant Res. 2021;134:989–97.
pubmed: 34115233 pmcid: 8364903 doi: 10.1007/s10265-021-01320-5
Chen M, Guo L, Ramakrishnan M, Fei Z, Vinod KK, Ding Y, et al. Rapid growth of Moso bamboo (Phyllostachys edulis): Cellular roadmaps, transcriptome dynamics, and environmental factors. Plant Cell. 2022;34:3577–610.
pubmed: 35766883 pmcid: 9516176 doi: 10.1093/plcell/koac193
Liu G, Shi P, Xu Q, Dong X, Wang F, Wang GG, et al. Does the size-density relationship developed for bamboo species conform to the self-thinning rule? Ecol Manage. 2016;361:339–45.
doi: 10.1016/j.foreco.2015.11.030
Díaz S, Kattge J, Cornelissen JHC, Wright IJ, Lavorel S, Dray S, et al. The global spectrum of plant form and function. Nature. 2016;529:167–71.
pubmed: 26700811 doi: 10.1038/nature16489
Baraloto C, Paine CET, Poorter L, Beauchene J, Bonal D, Domenach AM, et al. Decoupled leaf and stem economics in rain forest trees. Ecol Lett. 2010;13:1338–47.
pubmed: 20807232 doi: 10.1111/j.1461-0248.2010.01517.x
Fortunel C, Fine PVA, Baraloto C. Leaf, stem and root tissue strategies across 758 neotropical tree species. Funct Ecol. 2012;26:1153–61.
doi: 10.1111/j.1365-2435.2012.02020.x
Reich PB. The world-wide fast-slow plant economics spectrum: a traits manifesto. J Ecol. 2014;102:275–301.
doi: 10.1111/1365-2745.12211
Rosas T, Mencuccini M, Barba J, Cochard H, Saura-Mas S, Martínez-Vilalta J. Adjustments and coordination of hydraulic, leaf and stem traits along a water availability gradient. New Phytol. 2019;223:632–46.
pubmed: 30636323 doi: 10.1111/nph.15684
Jardine EC, Thomas GH, Forrestel EJ, Lehmann CER, Osborne CP. The global distribution of grass functional traits within grassy biomes. J Biogeogr. 2020;47:553–65.
doi: 10.1111/jbi.13764
Franklin O, Harrison SP, Dewar R, Farrior CE, Brännström Å, Dieckmann U, et al. Organizing principles for vegetation dynamics. Nat Plants. 2020;6:444–53.
pubmed: 32393882 doi: 10.1038/s41477-020-0655-x
Donovan LA, Maherali H, Caruso CM, Huber H, de Kroon H. The evolution of the worldwide leaf economics spectrum. Trends Ecol Evol. 2011;26:88–95.
pubmed: 21196061 doi: 10.1016/j.tree.2010.11.011
Ackerly D. Conservatism and diversification of plant functional traits: Evolutionary rates versus phylogenetic signal. Proc Natl Acad Sci U S A. 2009;106 SUPPL. 2:19699–706.
Losos JB. Phylogenetic niche conservatism, phylogenetic signal and the relationship between phylogenetic relatedness and ecological similarity among species. Ecol Lett. 2008;11:995–1003.
pubmed: 18673385 doi: 10.1111/j.1461-0248.2008.01229.x
Wiens JJ, Graham CH. Niche conservatism: integrating evolution, ecology, and conservation biology. Annu Rev Ecol Evol Syst. 2005;36:519–39.
doi: 10.1146/annurev.ecolsys.36.102803.095431
Peñuelas J, Fernández-Martínez M, Ciais P, Jou D, Piao S, Obersteiner M, et al. The bioelements, the elementome, and the biogeochemical niche. Ecology. 2019;100:1–15.
doi: 10.1002/ecy.2652
Sardans J, Llusià J, Ogaya R, Vallicrosa H, Filella I, Gargallo-Garriga A, et al. Foliar elementome and functional traits relationships identify tree species niche in French Guiana rainforests. Ecology. 2023;104:1–10.
doi: 10.1002/ecy.4118
Sardans J, Vallicrosa H, Zuccarini P, Farré-Armengol G, Fernández-Martínez M, Peguero G, et al. Empirical support for the biogeochemical niche hypothesis in forest trees. Nat Ecol Evol. 2021;5:184–94.
pubmed: 33398105 doi: 10.1038/s41559-020-01348-1
Pérez-Harguindeguy N, Díaz S, Garnier E, Lavorel S, Poorter H, Jaureguiberry P, et al. New handbook for standardised measurement of plant functional traits worldwide. Aust J Bot. 2013;61:167–234.
doi: 10.1071/BT12225
Marino G, Aqil M, Shipley B. The leaf economics spectrum and the prediction of photosynthetic light-response curves. Funct Ecol. 2010;24:263–72.
doi: 10.1111/j.1365-2435.2009.01630.x
Ye ZP, Yu Q, Kang HJ. Evaluation of photosynthetic electron flow using simultaneous measurements of gas exchange and chlorophyll fluorescence under photorespiratory conditions. Photosynthetica. 2012;50:472–6.
doi: 10.1007/s11099-012-0051-5
Ye ZP, Yu Q. A coupled model of stomatal conductance and photosynthesis for winter wheat. Photosynthetica. 2008;46:637–40.
doi: 10.1007/s11099-008-0110-0
Chamberlain SA, Boettiger CR. Python, and Ruby clients for GBIF species occurrence data. PeerJ Prepr. 2017;5:e3304v1.
R Core Team R. R: A language and environment for statistical computing. 2013.
Qian H, Jin Y. An updated megaphylogeny of plants, a tool for generating plant phylogenies and an analysis of phylogenetic community structure. J Plant Ecol. 2016;9:233–9.
doi: 10.1093/jpe/rtv047
Zanne AE, Tank DC, Cornwell WK, Eastman JM, Smith SA, Fitzjohn RG, et al. Three keys to the radiation of angiosperms into freezing environments. Nature. 2014;506:89–92.
pubmed: 24362564 doi: 10.1038/nature12872
Li D, Trotta L, Marx HE, Allen JM, Sun M, Soltis DE, et al. For common community phylogenetic analyses, go ahead and use synthesis phylogenies. Ecology. 2019;100:1–15.
doi: 10.1002/ecy.2788
Hadfield JD. MCMCglmm: MCMC methods for Multi-response GLMMs in R. J Stat Softw. 2010;33:1–22.
doi: 10.18637/jss.v033.i02
Warton DI, Duursma RA, Falster DS, Taskinen S. Smatr 3- an R package for estimation and inference about allometric lines. Methods Ecol Evol. 2012;3:257–9.
doi: 10.1111/j.2041-210X.2011.00153.x
González I, Déjean S, Martin PGP, Baccini A. CCA: an R package to extend canonical correlation analysis. J Stat Softw. 2008;23:1–14.
doi: 10.18637/jss.v023.i12
Menzel U. Significance tests for canonical correlation analysis (CCA). R Packag version. 2022.
Revell LJ. Phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol Evol. 2012;3:217–23.
doi: 10.1111/j.2041-210X.2011.00169.x
He N, Li Y, Liu C, Xu L, Li M, Zhang J, et al. Plant Trait networks: Improved Resolution of the dimensionality of adaptation. Trends Ecol Evol. 2020;35:908–18.
pubmed: 32595068 doi: 10.1016/j.tree.2020.06.003
Kleyer M, Trinogga J, Cebrián-Piqueras MA, Trenkamp A, Fløjgaard C, Ejrnæs R, et al. Trait correlation network analysis identifies biomass allocation traits and stem specific length as hub traits in herbaceous perennial plants. J Ecol. 2019;107:829–42.
doi: 10.1111/1365-2745.13066
Csardi G, Nepusz T. The igraph software package for complex network research. InterJournal Complex Syst. 2006;Complex Sy:1695.
Guo ZH, Ma PF, Yang GQ, Hu JY, Liu YL, Xia EH, et al. Genome sequences provide insights into the Reticulate Origin and Unique traits of Woody Bamboos. Mol Plant. 2019;12:1353–65.
pubmed: 31145999 doi: 10.1016/j.molp.2019.05.009
Ma P, Liu Y, Guo C, Jin G, Guo Z, Mao L et al. Genome assemblies of 11 bamboo species highlight diversification induced by dynamic subgenome dominance. Nat Genet. 2024;:1–16.
Funk JL, Larson JE, Ames GM, Butterfield BJ, Cavender-Bares J, Firn J, et al. Revisiting the Holy Grail: using plant functional traits to understand ecological processes. Biol Rev. 2017;92:1156–73.
pubmed: 27103505 doi: 10.1111/brv.12275
Baird AS, Taylor SH, Pasquet-Kok J, Vuong C, Zhang Y, Watcharamongkol T, et al. Developmental and biophysical determinants of grass leaf size worldwide. Nature. 2021;592:242–7.
pubmed: 33762735 doi: 10.1038/s41586-021-03370-0
Ahmad Z, Upadhyay A, Ding Y, Emamverdian A, Shahzad A, Bamboo. Origin, Habitat, distributions and global prospective. In: Ahmad Z, Ding Y, Shahzad A, editors. Biotechnological advances in Bamboo. Singapore: Springer Singapore; 2021. pp. 1–31.
doi: 10.1007/978-981-16-1310-4
Kelly R, Healy K, Anand M, Baudraz MEA, Bahn M, Cerabolini BEL, et al. Climatic and evolutionary contexts are required to infer plant life history strategies from functional traits at a global scale. Ecol Lett. 2021;24:970–83.
pubmed: 33638576 doi: 10.1111/ele.13704
Ackerly DD, Reich PB. Convergence and correlations among leaf size and function in seed plants: a comparative test using independent contrasts. Am J Bot. 1999;86:1272–81.
pubmed: 10487815 doi: 10.2307/2656775
Milla R, Bastida JM, Turcotte MM, Jones G, Violle C, Osborne CP, et al. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nat Ecol Evol. 2018;2:1808–17.
pubmed: 30349093 doi: 10.1038/s41559-018-0690-4
Clark LG, Londoño X, Ruiz-Sanchez E. Bamboo taxonomy and habitat. In: Liese W, Köhl M, editors. Tropical Forestry Series. Heidelberg, Germany: Springer International Publishing; 2015. pp. 1–30.
Shi P, Preisler HK, Quinn BK, Zhao J, Huang W, Röll A, et al. Precipitation is the most crucial factor determining the distribution of moso bamboo in Mainland China. Glob Ecol Conserv. 2020;22:e00924.
Grombone-Guaratini MT, Gaspar M, Oliveira VF, Torres MAMG, Do Nascimento A, Aidar MPM. Atmospheric CO2 enrichment markedly increases photosynthesis and growth in a woody tropical bamboo from the Brazilian atlantic forest. New Zeal J Bot. 2013;51:275–85.
doi: 10.1080/0028825X.2013.829502
Linder HP, Lehmann CER, Archibald S, Osborne CP, Richardson DM. Global grass (Poaceae) success underpinned by traits facilitating colonization, persistence and habitat transformation. Biol Rev. 2018;93:1125–44.
pubmed: 29230921 doi: 10.1111/brv.12388
Clark LG, London˜o X, Ruiz-Sanchez E. Bamboo taxonomy and Habitat. In: Liese W, editor. Tropical forestry. Springer International Publishing Switzerland; 2015. pp. 1–30.
Kobayashi K, Ohashi M, Fujihara M, Kitayama K. Rhizomes play significant roles in biomass accumulation, production and carbon turnover in a stand of the tall bamboo Phyllostachys edulis. J Res. 2022;00:1–9.
Shi J, Ye X, Chen F, Yang Q, Li Z, Fang K, et al. Adaptation of bamboo to heterogeneous habitat: phenotypic plasticity. Acta Ecol Sin. 2014;34:5687–96.
Evans JR, Clarke VC. The nitrogen cost of photosynthesis. J Exp Bot. 2019;70:7–15.
pubmed: 30357381 doi: 10.1093/jxb/ery366
Luo X, Keenan TF, Chen JM, Croft H, Colin Prentice I, Smith NG, et al. Global variation in the fraction of leaf nitrogen allocated to photosynthesis. Nat Commun. 2021;12:1–10.
doi: 10.1038/s41467-021-25163-9
Xu R, Cheng S, Zhou J, Tigabu M, Ma X, Li M. Intraspecific variations in leaf functional traits of Cunninghamia lanceolata provenances. BMC Plant Biol. 2023;23:1–11.
doi: 10.1186/s12870-023-04097-y
Wang J, Ouyang F, An S, Wang L, Xu N, Ma J, et al. Variation, coordination, and trade-offs between needle structures and photosynthetic-related traits across five Picea species: consequences on plant growth. BMC Plant Biol. 2022;22:1–16.
E-Vojtkó A, Junker RR, de Bello F, Götzenberger L. Floral and reproductive traits are an independent dimension within the plant economic spectrum of temperate central Europe. New Phytol. 2022;236:1964–75.
pubmed: 35842785 doi: 10.1111/nph.18386
Levionnois S, Salmon C, Alméras T, Clair B, Ziegler C, Coste S, et al. Anatomies, vascular architectures, and mechanics underlying the leaf size-stem size spectrum in 42 neotropical tree species. J Exp Bot. 2021;72:7957–69.
pubmed: 34390333 doi: 10.1093/jxb/erab379
Zhao X, Zhao P, Zhang Z, Zhu L, Hu Y, Ouyang L, et al. Culm age and rhizome affects night-time water recharge in the bamboo phyllostachys pubescens. Front Plant Sci. 2017;8:1–11.
doi: 10.3389/fpls.2017.01928
Ávila-Lovera E, Winter K, Goldsmith GR. Evidence for phylogenetic signal and correlated evolution in plant–water relation traits. New Phytol. 2023;237:392–407.
pubmed: 36271615 doi: 10.1111/nph.18565
Ma Z, Guo D, Xu X, Lu M, Bardgett RD, Eissenstat DM, et al. Evolutionary history resolves global organization of root functional traits. Nature. 2018;555:94–7.
pubmed: 29466331 doi: 10.1038/nature25783
Prescott CE, Grayston SJ, Helmisaari HS, Kaštovská E, Körner C, Lambers H, et al. Surplus Carbon drives allocation and plant–soil interactions. Trends Ecol Evol. 2020;35:1110–8.
pubmed: 32928565 doi: 10.1016/j.tree.2020.08.007
Rao Q, Chen J, Chou Q, Ren W, Cao T, Zhang M et al. Linking trait network parameters with plant growth across light gradients and seasons. Funct Ecol. 2023.
Sardans J, Peñuelas J, Rodà F. Plasticity of leaf morphological traits, leaf nutrient content, and water capture in the Mediterranean evergreen oak Quercus ilex subsp. ballota in response to fertilization and changes in competitive conditions. Ecoscience. 2006;13:258–70.
doi: 10.2980/i1195-6860-13-2-258.1
Sardans J, Peñuelas J. Tree growth changes with climate and forest type are associated with relative allocation of nutrients, especially phosphorus, to leaves and wood. Glob Ecol Biogeogr. 2013;22:494–507.
doi: 10.1111/geb.12015
Sardans J, PeNUuelas J, Estiarte M, Prieto P. Warming and drought alter C and N concentration, allocation and accumulation in a Mediterranean shrubland. Glob Chang Biol. 2008;14:2304–16.
doi: 10.1111/j.1365-2486.2008.01656.x
Jensen KH, Berg-Sørensen K, Bruus H, Holbrook NM, Liesche J, Schulz A et al. Sap flow and sugar transport in plants. Rev Mod Phys. 2016;88.
Yang S, Sterck FJ, Sass-Klaassen U, Cornelissen JHC, van Logtestijn RSP, Hefting M et al. Stem trait Spectra Underpin multiple functions of Temperate Tree species. Front Plant Sci. 2022;13 March.
Li Y, Liu C, Xu L, Li M, Zhang J, He N. Leaf Trait Networks based on Global Data: representing variation and adaptation in plants. Front Plant Sci. 2021;12:1–10.
doi: 10.3389/fpls.2021.710530
Reich PB, Oleksyn J. Global patterns of plant leaf N and P in relation to temperature and latitude. Proc Natl Acad Sci U S A. 2004;101:11001–6.
pubmed: 15213326 pmcid: 503733 doi: 10.1073/pnas.0403588101
Onoda Y, Wright IJ, Evans JR, Hikosaka K, Kitajima K, Niinemets Ü, et al. Physiological and structural tradeoffs underlying the leaf economics spectrum. New Phytol. 2017;214:1447–63.
pubmed: 28295374 doi: 10.1111/nph.14496
Feng YL, Lei YB, Wang RF, Callaway RM, Valiente-Banuet A, Inderjit, et al. Evolutionary tradeoffs for nitrogen allocation to photosynthesis versus cell walls in an invasive plant. Proc Natl Acad Sci U S A. 2009;106:1853–6.
pubmed: 19171910 pmcid: 2644127 doi: 10.1073/pnas.0808434106
Hassiotou F, Renton M, Ludwig M, Evans JR, Veneklaas EJ. Photosynthesis at an extreme end of the leaf trait spectrum: how does it relate to high leaf dry mass per area and associated structural parameters? J Exp Bot. 2010;61:3015–28.
pubmed: 20484320 pmcid: 2892145 doi: 10.1093/jxb/erq128

Auteurs

Xiong Liu (X)

College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China.
CREAF, Cerdanyola del Vallès, Catalonia, 08193, Spain.
Global Ecology Unit, CSIC, CREAF-CSIC-UAB, Bellaterra, Catalonia, 08193, Spain.

Shixing Zhou (S)

College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China.

Junxi Hu (J)

College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China.

Xingcheng Zou (X)

College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China.

Liehua Tie (L)

Institute for Forest Resources and Environment of Guizhou, Key Laboratory of Forest Cultivation in Plateau Mountain of Guizhou Province, College of Forestry, Guizhou University, Guiyang, 550025, China.

Ying Li (Y)

College of Grassland Science, Beijing Forestry University, Beijing, 100091, China.

Xinglei Cui (X)

College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China.

Congde Huang (C)

College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China. huangcongde@sicau.edu.cn.
National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, SICAU, Chengdu, 611130, China. huangcongde@sicau.edu.cn.

Jordi Sardans (J)

CREAF, Cerdanyola del Vallès, Catalonia, 08193, Spain.
Global Ecology Unit, CSIC, CREAF-CSIC-UAB, Bellaterra, Catalonia, 08193, Spain.

Josep Peñuelas (J)

CREAF, Cerdanyola del Vallès, Catalonia, 08193, Spain.
Global Ecology Unit, CSIC, CREAF-CSIC-UAB, Bellaterra, Catalonia, 08193, Spain.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Populus Soil Microbiology Soil Microbiota Fungi
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH