Identifying proteomic risk factors for cancer using prospective and exome analyses of 1463 circulating proteins and risk of 19 cancers in the UK Biobank.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
15 May 2024
15 May 2024
Historique:
received:
29
09
2023
accepted:
18
04
2024
medline:
16
5
2024
pubmed:
16
5
2024
entrez:
15
5
2024
Statut:
epublish
Résumé
The availability of protein measurements and whole exome sequence data in the UK Biobank enables investigation of potential observational and genetic protein-cancer risk associations. We investigated associations of 1463 plasma proteins with incidence of 19 cancers and 9 cancer subsites in UK Biobank participants (average 12 years follow-up). Emerging protein-cancer associations were further explored using two genetic approaches, cis-pQTL and exome-wide protein genetic scores (exGS). We identify 618 protein-cancer associations, of which 107 persist for cases diagnosed more than seven years after blood draw, 29 of 618 were associated in genetic analyses, and four had support from long time-to-diagnosis ( > 7 years) and both cis-pQTL and exGS analyses: CD74 and TNFRSF1B with NHL, ADAM8 with leukemia, and SFTPA2 with lung cancer. We present multiple blood protein-cancer risk associations, including many detectable more than seven years before cancer diagnosis and that had concordant evidence from genetic analyses, suggesting a possible role in cancer development.
Identifiants
pubmed: 38750076
doi: 10.1038/s41467-024-48017-6
pii: 10.1038/s41467-024-48017-6
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
4010Subventions
Organisme : Cancer Research UK (CRUK)
ID : C8221/A29017
Organisme : Cancer Research UK (CRUK)
ID : C8221/A29186
Informations de copyright
© 2024. The Author(s).
Références
Knuppel, A. et al. Circulating insulin-like growth factor-I concentrations and risk of 30 cancers: prospective analyses in UK Biobank. Cancer Res. 80, 4014–4021 (2020).
pubmed: 32709735
doi: 10.1158/0008-5472.CAN-20-1281
Watts, E. L. et al. Circulating insulin-like growth factors and risks of overall, aggressive and early-onset prostate cancer: a collaborative analysis of 20 prospective studies and Mendelian randomization analysis. Int. J. Epidemiol. 52, 71–86 (2023).
pubmed: 35726641
doi: 10.1093/ije/dyac124
Smith Byrne, K. et al. The role of plasma microseminoprotein-beta in prostate cancer: an observational nested case-control and Mendelian randomization study in the European prospective investigation into cancer and nutrition. Ann. Oncol. 30, 983–989 (2019).
pubmed: 31089709
pmcid: 6594452
doi: 10.1093/annonc/mdz121
Menon, U. et al. Ovarian cancer population screening and mortality after long-term follow-up in the UK Collaborative Trial of Ovarian Cancer Screening (UKCTOCS): a randomised controlled trial. Lancet 397, 2182–2193 (2021).
pubmed: 33991479
pmcid: 8192829
doi: 10.1016/S0140-6736(21)00731-5
Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) Consortium for Early Detection of Lung Cancer. Assessment of Lung Cancer Risk on the Basis of a Biomarker Panel of Circulating Proteins. JAMA Oncol. 4, e182078 (2018).
doi: 10.1001/jamaoncol.2018.2078
Ballehaninna, U. K. & Chamberlain, R. S. The clinical utility of serum CA 19-9 in the diagnosis, prognosis and management of pancreatic adenocarcinoma: An evidence based appraisal. J. Gastrointest. Oncol. 3, 105–119 (2012).
pubmed: 22811878
pmcid: 3397644
Lane, J. A. et al. Latest results from the UK trials evaluating prostate cancer screening and treatment: the CAP and ProtecT studies. Eur. J. Cancer 46, 3095–3101 (2010).
pubmed: 21047592
doi: 10.1016/j.ejca.2010.09.016
Johansson, Å. et al. Identification of genetic variants influencing the human plasma proteome. Proc. Natl. Acad. Sci. USA 110, 4673–4678 (2013).
pubmed: 23487758
pmcid: 3606982
doi: 10.1073/pnas.1217238110
Suhre, K., McCarthy, M. I. & Schwenk, J. M. Genetics meets proteomics: perspectives for large population-based studies. Nat. Rev. Genet. 22, 19–37 (2021).
pubmed: 32860016
doi: 10.1038/s41576-020-0268-2
Munafò, M. R. & Davey Smith, G. Robust research needs many lines of evidence. Nature 553, 399–401 (2018).
pubmed: 29368721
doi: 10.1038/d41586-018-01023-3
DeBoever, C. et al. Medical relevance of protein-truncating variants across 337,205 individuals in the UK Biobank study. Nat. Commun. 9, 1612 (2018).
pubmed: 29691392
pmcid: 5915386
doi: 10.1038/s41467-018-03910-9
Gkatzionis, A., Burgess, S. & Newcombe, P. J. Statistical methods for cis‐Mendelian randomization with two‐sample summary‐level data. Genet. Epidemiol. 47, 3–25 (2023).
pubmed: 36273411
doi: 10.1002/gepi.22506
Zhong, W. et al. Whole-genome sequence association analysis of blood proteins in a longitudinal wellness cohort. Genome Med. 12, 53 (2020).
pubmed: 32576278
pmcid: 7310558
doi: 10.1186/s13073-020-00755-0
Lawlor, D. A., Tilling, K. & Davey Smith, G. Triangulation in aetiological epidemiology. Int. J. Epidemiol. 45, 1866–1886 (2017).
Kim, K. H. & Lee, M.-S. GDF15 as a central mediator for integrated stress response and a promising therapeutic molecule for metabolic disorders and NASH. Biochim. Biophys. Acta Gen. Subj. 1865, 129834 (2021).
pubmed: 33358864
doi: 10.1016/j.bbagen.2020.129834
Floros, J., Thorenoor, N., Tsotakos, N. & Phelps, D. S. Human surfactant protein SP-A1 and SP-A2 variants differentially affect the alveolar microenvironment, surfactant structure, regulation and function of the alveolar macrophage, and animal and human survival under various conditions. Front. Immunol. 12, 681639 (2021).
Tsherniak, A. et al. Defining a cancer dependency map. Cell 170, 564–576 (2017).
pubmed: 28753430
pmcid: 5667678
doi: 10.1016/j.cell.2017.06.010
Beer, P. A. et al. Two routes to leukemic transformation after a JAK2 mutation–positive myeloproliferative neoplasm. Blood 115, 2891–2900 (2010).
pubmed: 20008300
doi: 10.1182/blood-2009-08-236596
Gnanasambandan, K., Magis, A. & Sayeski, P. P. The constitutive activation of Jak2-V617F is mediated by a π stacking mechanism involving Phe 595 and Phe 617. Biochemistry 49, 9972–9984 (2010).
pubmed: 20958061
doi: 10.1021/bi1014858
Benton, C. B. et al. Janus kinase 2 variants associated with the transformation of myeloproliferative neoplasms into acute myeloid leukemia. Cancer 125, 1855–1866 (2019).
pubmed: 30811597
doi: 10.1002/cncr.31986
Dagnino, S. et al. Prospective identification of elevated circulating CDCP1 in patients years before onset of lung cancer. Cancer Res. 81, 3738–3748 (2021).
pubmed: 33574093
pmcid: 7611235
doi: 10.1158/0008-5472.CAN-20-3454
Robbins, H. A. et al. Design and methodological considerations for biomarker discovery and validation in the Integrative Analysis of Lung Cancer Etiology and Risk (INTEGRAL) Program. Ann. Epidemiol. 77, 1–12 (2023).
pubmed: 36404465
pmcid: 9835888
doi: 10.1016/j.annepidem.2022.10.014
Wilson, K. R., Villadangos, J. A. & Mintern, J. D. Dendritic cell Flt3 – regulation, roles and repercussions for immunotherapy. Immunol. Cell Biol. 99, 962–971 (2021).
pubmed: 34097779
doi: 10.1111/imcb.12484
Herberts, C., Wyatt, A. W., Nguyen, P. L. & Cheng, H. H. Genetic and genomic testing for prostate cancer: beyond DNA repair. Am. Soc. Clin. Oncol. Educ. Book 43, https://doi.org/10.1200/EDBK_390384 (2023).
Gerhauser, C. et al. Molecular evolution of early onset prostate cancer identifies molecular risk markers and clinical trajectories. Cancer Cell 34, 996–1011.e8 (2018).
pubmed: 30537516
pmcid: 7444093
doi: 10.1016/j.ccell.2018.10.016
Martínez-Jiménez, F. et al. A compendium of mutational cancer driver genes. Nat. Rev. Cancer 20, 555–572 (2020).
pubmed: 32778778
doi: 10.1038/s41568-020-0290-x
Albanes, D. et al. The blood proteome of imminent lung cancer diagnosis. Nat. Commun. 14, 3042 (2023).
doi: 10.1038/s41467-023-37979-8
Sun, X. et al. Prospective proteomic study identifies potential circulating protein biomarkers for colorectal cancer risk. Cancers 14, 3261 (2022).
pubmed: 35805033
pmcid: 9265260
doi: 10.3390/cancers14133261
Harlid, S., Myte, R. & Van Guelpen, B. The Metabolic syndrome, inflammation, and colorectal cancer risk: an evaluation of large panels of plasma protein markers using repeated, prediagnostic samples. Mediators Inflamm. 2017, 4803156 (2017).
pubmed: 28522899
pmcid: 5381203
doi: 10.1155/2017/4803156
Kartsonaki, C. et al. Circulating proteins and risk of pancreatic cancer: a case-subcohort study among Chinese adults. Int. J. Epidemiol. 51, 817–829 (2022).
pubmed: 35064782
pmcid: 9189974
doi: 10.1093/ije/dyab274
Álvez, M. B. et al. Next generation pan-cancer blood proteome profiling using proximity extension assay. Nat. Commun. 14, 4308 (2023).
pubmed: 37463882
pmcid: 10354027
doi: 10.1038/s41467-023-39765-y
Kolijn, P. M. et al. High-risk subtypes of chronic lymphocytic leukemia are detectable as early as 16 years prior to diagnosis. Blood 139, 1557–1563 (2022).
pubmed: 34662377
doi: 10.1182/blood.2021012890
Kaaks, R. et al. Lag times between lymphoproliferative disorder and clinical diagnosis of chronic lymphocytic leukemia: a prospective analysis using plasma soluble CD23. Cancer Epidemiol. Biomarkers Prev. 24, 538–545 (2015).
pubmed: 25542829
doi: 10.1158/1055-9965.EPI-14-1107
Fry, A. et al. Comparison of sociodemographic and health-related characteristics of UK Biobank participants with those of the general population. Am. J. Epidemiol. 186, 1026–1034 (2017).
pubmed: 28641372
pmcid: 5860371
doi: 10.1093/aje/kwx246
Sung, H. et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. Ca. Cancer J. Clin. 71, 209–249 (2021).
pubmed: 33538338
doi: 10.3322/caac.21660
Said, S. et al. Ancestry diversity in the genetic determinants of the human plasma proteome and associated new drug targets. Preprint at http://medrxiv.org/lookup/doi/10.1101/2023.11.13.23298365 (2023).
Zhang, J. et al. Plasma proteome analyses in individuals of European and African ancestry identify cis-pQTLs and models for proteome-wide association studies. Nat. Genet. 54, 593–602 (2022).
pubmed: 35501419
pmcid: 9236177
doi: 10.1038/s41588-022-01051-w
Sun, B. B. et al. Plasma proteomic associations with genetics and health in the UK Biobank. Nature 622, 329–338 (2023).
pubmed: 37794186
pmcid: 10567551
doi: 10.1038/s41586-023-06592-6
Dhindsa, R. S. et al. Rare variant associations with plasma protein levels in the UK Biobank. Nature 622, 339–347 (2023).
pubmed: 37794183
pmcid: 10567546
doi: 10.1038/s41586-023-06547-x
Langenberg, C., Hingorani, A. D. & Whitty, C. J. M. Biological and functional multimorbidity—from mechanisms to management. Nat. Med. 29, 1649–1657 (2023).
pubmed: 37464031
doi: 10.1038/s41591-023-02420-6
Collins, R. What makes UK Biobank special? Lancet 379, 1173–1174 (2012).
pubmed: 22463865
doi: 10.1016/S0140-6736(12)60404-8
Wik, L. et al. Proximity extension assay in combination with next-generation sequencing for high-throughput proteome-wide analysis. Mol. Cell. Proteomics 20, 100168 (2021).
pubmed: 34715355
pmcid: 8633680
doi: 10.1016/j.mcpro.2021.100168
Protocol for processing UKB whole exome sequencing data sets. https://dnanexus.gitbook.io/uk-biobank-rap/science-corner/whole-exome-sequencing-oqfe-protocol/protocol-for-processing-ukb-whole-exome-sequencing-data-sets . Accessed on July 25
Dhindsa, R. S. et al. Influences of rare protein-coding genetic variants on the human plasma proteome in 50,829 UK Biobank participants. 2022.10.09.511476 Preprint at https://www.biorxiv.org/content/10.1101/2022.10.09.511476v1 (2022).
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
pubmed: 22728672
pmcid: 3679285
doi: 10.4161/fly.19695
Sun, B. B. et al. Genetic regulation of the human plasma proteome in 54,306 UK Biobank participants. 2022.06.17.496443 Preprint at https://www.biorxiv.org/content/10.1101/2022.06.17.496443v1 (2022).
Thul, P. J. & Lindskog, C. The human protein atlas: a spatial map of the human proteome. Protein Sci. 27, 233–244 (2018).
pubmed: 28940711
doi: 10.1002/pro.3307
Ochoa, D. et al. The next-generation Open Targets Platform: reimagined, redesigned, rebuilt. Nucleic Acids Res. 51, D1353–D1359 (2023).
pubmed: 36399499
doi: 10.1093/nar/gkac1046
Mendez, D. et al. ChEMBL: towards direct deposition of bioassay data. Nucleic Acids Res. 47, D930–D940 (2019).
pubmed: 30398643
doi: 10.1093/nar/gky1075
DailyMed. https://www.dailymed.nlm.nih.gov/dailymed/ (Last accessed on 26 April, 2024).
Home - electronic medicines compendium (emc). https://www.medicines.org.uk/emc#gref (Last accessed on 26 April, 2024).
Chen, Z.-L. et al. A high-speed search engine pLink 2 with systematic evaluation for proteome-scale identification of cross-linked peptides. Nat. Commun. 10, 3404 (2019).
pubmed: 31363125
pmcid: 6667459
doi: 10.1038/s41467-019-11337-z
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654
pmcid: 7334197
doi: 10.1038/s41586-020-2308-7