Effect of humic substances on the fraction of heavy metal and microbial response.
BCR
Bacterial
Fulvic acid and humic acid
Molybdenum
Soil
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
16 05 2024
16 05 2024
Historique:
received:
26
02
2024
accepted:
07
05
2024
medline:
17
5
2024
pubmed:
17
5
2024
entrez:
16
5
2024
Statut:
epublish
Résumé
Contamination of soils by Molybdenum (Mo) has raised increasing concern worldwide. Both fulvic acid (FA) and humic acid (HA) possess numerous positive properties, such as large specific surface areas and microporous structure that facilitates the immobilization of the heavy metal in soils. Despite these characteristics, there have been few studies on the microbiology effects of FA and HA. Therefore, this study aimed to assess the Mo immobilization effects of FA and HA, as well as the associated changes in microbial community in Mo-contaminated soils (with application rates of 0%, 0.5% and 1.0%). The result of the incubation demonstrated a decrease in soil pH (from 8.23 ~ 8.94 to 8.05 ~ 8.77). Importantly, both FA and HA reduced the exchangeable fraction and reducible fraction of Mo in the soil, thereby transforming Mo into a more stable form. Furthermore, the application of FA and HA led to an increase in the relative abundance of Actinobacteriota and Firmicutes, resulting in alterations to the microbial community structure. However, it is worth noting that due to the differing structures and properties of FA and HA, these outcomes were not entirely consistent. In summary, the aging of FA and HA in soil enhanced their capacity to immobilization Mo as a soil amendment. This suggests that they have the potential to serve as effective amendments for the remediation of Mo-contaminated soils.
Identifiants
pubmed: 38755178
doi: 10.1038/s41598-024-61575-5
pii: 10.1038/s41598-024-61575-5
doi:
Substances chimiques
fulvic acid
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
11206Subventions
Organisme : Henan Province Department of Science and Technology Science and Technology Project
ID : 222102320023
Organisme : the Natural Science Foundation of China
ID : 18IRTSTHN009
Informations de copyright
© 2024. The Author(s).
Références
Hong, Y. et al. Combined apatite, biochar, and organic fertilizer application for heavy metal co-contaminated soil remediation reduces heavy metal transport and alters soil microbial community structure. Sci. Total Environ. 851, 158033. https://doi.org/10.1016/j.scitotenv.2022.158033 (2022).
doi: 10.1016/j.scitotenv.2022.158033
pubmed: 35973531
Wu, C. et al. Effect of sulfur-iron modified biochar on the available cadmium and bacterial community structure in contaminated soils. Sci. Total Environ. 647, 1158–1168. https://doi.org/10.1016/j.scitotenv.2018.08.087 (2019).
doi: 10.1016/j.scitotenv.2018.08.087
pubmed: 30180324
Tahir, N. et al. Strategies for reducing Cd concentration in paddy soil for rice safety. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2021.128116 (2021).
doi: 10.1016/j.jclepro.2021.128116
Yin, K., Shi, Z., Zhang, M. & Li, Y. Effects of mining on the molybdenum absorption and translocation of plants in the Luanchuan molybdenum mine. PeerJ 8, e9183. https://doi.org/10.7717/peerj.9183 (2020).
doi: 10.7717/peerj.9183
pubmed: 32518726
pmcid: 7258905
van Gestel, C. A. M. et al. Effect of long-term equilibration on the toxicity of molybdenum to soil organisms. Environ. Pollut. 162, 1–7. https://doi.org/10.1016/j.envpol.2011.10.013 (2012).
doi: 10.1016/j.envpol.2011.10.013
pubmed: 22243841
Boojar, M. M. A. & Tavakkoli, Z. New molybdenum-hyperaccumulator among plant species growing on molybdenum mine—A biochemical study on tolerance mechanism against metal toxicity. J. Plant Nutr. 34, 1532–1557. https://doi.org/10.1080/01904167.2011.585209 (2011).
doi: 10.1080/01904167.2011.585209
Ferguson, W., Lewis, A. & Watson, S. J. The teart pastures of Somerset: I. The cause and cure of teartness. Journal of Agricultural Science 33, 44–51. https://doi.org/10.1017/S002185960004836X (1943).
doi: 10.1017/S002185960004836X
Shi, Y. et al. Changes in molybdenum bioaccessibility in four spiked soils with respect to soil pH and organic matter. J. Environ. Manag. 334, 117476. https://doi.org/10.1016/j.jenvman.2023.117476 (2023).
doi: 10.1016/j.jenvman.2023.117476
Afkhami, A. & Norooz-Asl, R. Removal, preconcentration and determination of Mo(VI) from water and wastewater samples using maghemite nanoparticles. Colloids Surf. A 346, 52–57. https://doi.org/10.1016/j.colsurfa.2009.05.024 (2009).
doi: 10.1016/j.colsurfa.2009.05.024
Timofeev, I., Kosheleva, N. & Kasimov, N. Contamination of soils by potentially toxic elements in the impact zone of tungsten-molybdenum ore mine in the Baikal region: A survey and risk assessment. Sci. Total Environ. 642, 63–76. https://doi.org/10.1016/j.scitotenv.2018.06.042 (2018).
doi: 10.1016/j.scitotenv.2018.06.042
pubmed: 29894883
Goldberg, S. & Forster, H. Factors affecting molybdenum adsorption by soils and minerals. Soil Sci. 163, 109–114. https://doi.org/10.1097/00010694-199802000-00004 (1998).
doi: 10.1097/00010694-199802000-00004
Xu, N., Christodoulatos, C. & Braida, W. Adsorption of molybdate and tetrathiomolybdate onto pyrite and goethite: Effect of pH and competitive anions. Chemosphere 62, 1726–1735. https://doi.org/10.1016/j.chemosphere.2005.06.025 (2006).
doi: 10.1016/j.chemosphere.2005.06.025
pubmed: 16084558
Namasivayam, C. & Sureshkumar, M. V. Removal and recovery of molybdenum from aqueous solutions by adsorption onto surfactant-modified coir pith, a lignocellulosic polymer. CLEAN Soil Air Water 37, 60–66. https://doi.org/10.1002/clen.200800130 (2009).
doi: 10.1002/clen.200800130
Williams, C. & Thornton, I. The effect of soil additives on the uptake of molybdenum and selenium from soils from different environments. Plant Soil 36, 395–406. https://doi.org/10.1007/BF01373493 (1972).
doi: 10.1007/BF01373493
Mai, X. et al. Research progress on the environmental risk assessment and remediation technologies of heavy metal pollution in agricultural soil. J. Environ. Sci. 149, 1–20. https://doi.org/10.1016/j.jes.2024.01.045 (2025).
doi: 10.1016/j.jes.2024.01.045
Wang, Y. et al. Removal of Cu and Pb from contaminated agricultural soil using mixed chelators of fulvic acid potassium and citric acid. Ecotoxicol. Environ. Saf. https://doi.org/10.1016/j.ecoenv.2020.111179 (2020).
doi: 10.1016/j.ecoenv.2020.111179
pubmed: 33396179
pmcid: 7526608
Ning, D., Liang, Y., Song, A., Duan, A. & Liu, Z. In situ stabilization of heavy metals in multiple-metal contaminated paddy soil using different steel slag-based silicon fertilizer. Environ. Sci. Pollut. Res. 23, 23638–23647. https://doi.org/10.1007/s11356-016-7588-y (2016).
doi: 10.1007/s11356-016-7588-y
Attinti, R., Barrett, K. R., Datta, R. & Sarkar, D. Ethylenediaminedisuccinic acid (EDDS) enhances phytoextraction of lead by vetiver grass from contaminated residential soils in a panel study in the field. Environ. Pollut. 225, 524–533. https://doi.org/10.1016/j.envpol.2017.01.088 (2017).
doi: 10.1016/j.envpol.2017.01.088
pubmed: 28318794
Hamdi, F. M. et al. Hybrid and enhanced electrokinetic system for soil remediation from heavy metals and organic matter. J. Environ. Sci. 147, 424–450. https://doi.org/10.1016/j.jes.2023.11.005 (2025).
doi: 10.1016/j.jes.2023.11.005
Ondrasek, G., Rengel, Z. & Romic, D. Humic acids decrease uptake and distribution of trace metals, but not the growth of radish exposed to cadmium toxicity. Ecotoxicol. Environ. Saf. 151, 55–61. https://doi.org/10.1016/j.ecoenv.2017.12.055 (2018).
doi: 10.1016/j.ecoenv.2017.12.055
pubmed: 29306071
Goldan, E. et al. Assessment of manure compost used as soil amendment—A review. Processes. https://doi.org/10.3390/pr11041167 (2023).
doi: 10.3390/pr11041167
Yu, Y., Wan, Y., Camara, A. Y. & Li, H. Effects of the addition and aging of humic acid-based amendments on the solubility of Cd in soil solution and its accumulation in rice. Chemosphere 196, 303–310. https://doi.org/10.1016/j.chemosphere.2018.01.002 (2018).
doi: 10.1016/j.chemosphere.2018.01.002
pubmed: 29306783
Li, C. et al. Effects of swine manure composting by microbial inoculation: Heavy metal fractions, humic substances, and bacterial community metabolism. J. Hazard. Mater. 415, 125559. https://doi.org/10.1016/j.jhazmat.2021.125559 (2021).
doi: 10.1016/j.jhazmat.2021.125559
pubmed: 33743378
Ding, Y. et al. Binding characteristics of heavy metals to humic acid before and after fractionation by ferrihydrite. Chemosphere 226, 140–148. https://doi.org/10.1016/j.chemosphere.2019.03.124 (2019).
doi: 10.1016/j.chemosphere.2019.03.124
pubmed: 30925406
Kunlanit, B., Butnan, S. & Vityakon, P. Land-use changes influencing C sequestration and quality in topsoil and subsoil. Agronomy. https://doi.org/10.3390/agronomy9090520 (2019).
doi: 10.3390/agronomy9090520
Li, C. et al. Accumulation of heavy metals in rice and the microbial response in a contaminated paddy field. J. Soils Sediments https://doi.org/10.1007/s11368-023-03643-3 (2023).
doi: 10.1007/s11368-023-03643-3
Zhang, C. et al. Effects of heavy metals and soil physicochemical properties on wetland soil microbial biomass and bacterial community structure. Sci. Total Environ. 557–558, 785–790. https://doi.org/10.1016/j.scitotenv.2016.01.170 (2016).
doi: 10.1016/j.scitotenv.2016.01.170
pubmed: 27046142
Kim, H.-B. et al. Effect of dissolved organic carbon from sludge, Rice straw and spent coffee ground biochar on the mobility of arsenic in soil. Sci. Total Environ. 636, 1241–1248. https://doi.org/10.1016/j.scitotenv.2018.04.406 (2018).
doi: 10.1016/j.scitotenv.2018.04.406
pubmed: 29913586
Zhu, J. et al. Phylogenetic analysis of bacterial community composition in sediment contaminated with multiple heavy metals from the Xiangjiang River in China. Mar. Pollut. Bull. 70, 134–139. https://doi.org/10.1016/j.marpolbul.2013.02.023 (2013).
doi: 10.1016/j.marpolbul.2013.02.023
pubmed: 23507235
Grandlic, C. J., Geib, I., Pilon, R. & Sandrin, T. R. Lead pollution in a large, prairie-pothole lake (Rush Lake, WI, USA): Effects on abundance and community structure of indigenous sediment bacteria. Environ. Pollut. 144, 119–126. https://doi.org/10.1016/j.envpol.2005.12.029 (2006).
doi: 10.1016/j.envpol.2005.12.029
pubmed: 16513232
Gołębiewski, M., Deja-Sikora, E., Cichosz, M., Tretyn, A. & Wróbel, B. 16S rDNA pyrosequencing analysis of bacterial community in heavy metals polluted soils. Microb. Ecol. 67, 635–647. https://doi.org/10.1007/s00248-013-0344-7 (2014).
doi: 10.1007/s00248-013-0344-7
pubmed: 24402360
pmcid: 3962847
Lin, Y., Ye, Y., Hu, Y. & Shi, H. The variation in microbial community structure under different heavy metal contamination levels in paddy soils. Ecotoxicol. Environ. Saf. 180, 557–564. https://doi.org/10.1016/j.ecoenv.2019.05.057 (2019).
doi: 10.1016/j.ecoenv.2019.05.057
pubmed: 31128554
Ure, A. M., Quevauviller, P., Muntau, H. & Griepink, B. Speciation of heavy metals in soils and sediments. An account of the improvement and harmonization of extraction techniques undertaken under the auspices of the BCR of the Commission of the European Communities. Int. J. Environ. Anal. Chem. 51, 135–151. https://doi.org/10.1080/03067319308027619 (1993).
doi: 10.1080/03067319308027619
Fan, W., Wang, W.-X., Chen, J., Li, X. & Yen, Y.-F. Cu, Ni, and Pb speciation in surface sediments from a contaminated bay of northern China. Mar. Pollut. Bull. 44, 820–826. https://doi.org/10.1016/S0025-326X(02)00069-3 (2002).
doi: 10.1016/S0025-326X(02)00069-3
pubmed: 12269485
Dong, Y., Lin, H., Zhao, Y. & Gueret Yadiberet Menzembere, E. R. Remediation of vanadium-contaminated soils by the combination of natural clay mineral and humic acid. J. Clean. Prod. https://doi.org/10.1016/j.jclepro.2020.123874 (2021).
Ruiz, E., Rodríguez, L. & Alonso-Azcárate, J. Effects of earthworms on metal uptake of heavy metals from polluted mine soils by different crop plants. Chemosphere 75, 1035–1041. https://doi.org/10.1016/j.chemosphere.2009.01.042 (2009).
doi: 10.1016/j.chemosphere.2009.01.042
pubmed: 19232427
Wang, M. et al. Chemical fractionation and risk assessment of surface sediments in Luhun Reservoir, Luoyang city, China. Environ. Sci. Pollut. Res. 27, 35319–35329. https://doi.org/10.1007/s11356-020-09512-7 (2020).
doi: 10.1007/s11356-020-09512-7
Bettinelli, M., Beone, G. M., Spezia, S. & Baffi, C. Determination of heavy metals in soils and sediments by microwave-assisted digestion and inductively coupled plasma optical emission spectrometry analysis. Anal. Chim. Acta 424, 289–296. https://doi.org/10.1016/S0003-2670(00)01123-5 (2000).
doi: 10.1016/S0003-2670(00)01123-5
Wen, J., Yi, Y. & Zeng, G. Effects of modified zeolite on the removal and stabilization of heavy metals in contaminated lake sediment using BCR sequential extraction. J. Environ. Manag. 178, 63–69. https://doi.org/10.1016/j.jenvman.2016.04.046 (2016).
doi: 10.1016/j.jenvman.2016.04.046
Zhong, X., Zhou, S., Huang, M. & Zhao, Q. Distribution characteristics of heavy metal forms in soil and their influencing factors. Ecol. Environ. Sci. 18, 1266–1273. https://doi.org/10.16258/j.cnki.1674-5906.2009.04.023 (2009).
doi: 10.16258/j.cnki.1674-5906.2009.04.023
Janoš, P., Hůla, V., Bradnová, P., Pilařová, V. & Šedlbauer, J. Reduction and immobilization of hexavalent chromium with coal- and humate-based sorbents. Chemosphere 75, 732–738. https://doi.org/10.1016/j.chemosphere.2009.01.037 (2009).
doi: 10.1016/j.chemosphere.2009.01.037
pubmed: 19215962
Wu, J. & Laird, D. A. Interactions of chlorpyrifos with colloidal materials in aqueous systems. J. Environ. Qual. 33, 1765–1770. https://doi.org/10.2134/jeq2004.1765 (2004).
doi: 10.2134/jeq2004.1765
pubmed: 15356236
Yu, G., Jiang, X., He, W. & He, Z. Effect of humic acids on species and activity of cadmium and lead in red soil. Acta Scientiae Circumstantiae 22, 508–513. https://doi.org/10.13671/j.hjkxxb.2002.04.019 (2002).
doi: 10.13671/j.hjkxxb.2002.04.019
Halter, D. et al. Taxonomic and functional prokaryote diversity in mildly arsenic-contaminated sediments. Res. Microbiol. 162, 877–887. https://doi.org/10.1016/j.resmic.2011.06.001 (2011).
doi: 10.1016/j.resmic.2011.06.001
pubmed: 21704701
Jiang, B. et al. Impacts of heavy metals and soil properties at a Nigerian e-waste site on soil microbial community. J. Hazard. Mater. 362, 187–195. https://doi.org/10.1016/j.jhazmat.2018.08.060 (2019).
doi: 10.1016/j.jhazmat.2018.08.060
pubmed: 30240992
Rahman, Z. & Singh, V. P. Assessment of heavy metal contamination and Hg-resistant bacteria in surface water from different regions of Delhi, India. Saudi J. Biol. Sci. 25, 1687–1695. https://doi.org/10.1016/j.sjbs.2016.09.018 (2018).
doi: 10.1016/j.sjbs.2016.09.018
pubmed: 30591786
Kenarova, A., Radeva, G., Traykov, I. & Boteva, S. Community level physiological profiles of bacterial communities inhabiting uranium mining impacted sites. Ecotoxicol. Environ. Saf. 100, 226–232. https://doi.org/10.1016/j.ecoenv.2013.11.012 (2014).
doi: 10.1016/j.ecoenv.2013.11.012
pubmed: 24315773
Karelová, E., Harichová, J., Stojnev, T., Pangallo, D. & Ferianc, P. The isolation of heavy-metal resistant culturable bacteria and resistance determinants from a heavy-metal-contaminated site. BIOLOGIA 66, 18–26. https://doi.org/10.2478/s11756-010-0145-0 (2011).
doi: 10.2478/s11756-010-0145-0
Naz, M. et al. The soil pH and heavy metals revealed their impact on soil microbial community. J. Environ. Manag. https://doi.org/10.1016/j.jenvman.2022.115770 (2022).
doi: 10.1016/j.jenvman.2022.115770
Guo, H., Nasir, M., Lv, J., Dai, Y. & Gao, J. Understanding the variation of microbial community in heavy metals contaminated soil using high throughput sequencing. Ecotoxicol. Environ. Saf. 144, 300–306. https://doi.org/10.1016/j.ecoenv.2017.06.048 (2017).
doi: 10.1016/j.ecoenv.2017.06.048
pubmed: 28645031
Guo, Q., Yan, L., Korpelainen, H., Niinemets, Ü. & Li, C. Plant–plant interactions and N fertilization shape soil bacterial and fungal communities. Soil Biol. Biochem. 128, 127–138. https://doi.org/10.1016/j.soilbio.2018.10.018 (2019).
doi: 10.1016/j.soilbio.2018.10.018
Constancias, F. et al. Contrasting spatial patterns and ecological attributes of soil bacterial and archaeal taxa across a landscape. Microbiol. Open 4, 518–531. https://doi.org/10.1002/mbo3.256 (2015).
doi: 10.1002/mbo3.256
Schneider, A. R. et al. Response of bacterial communities to Pb smelter pollution in contrasting soils. Sci. Total Environ. 605–606, 436–444. https://doi.org/10.1016/j.scitotenv.2017.06.159 (2017).
doi: 10.1016/j.scitotenv.2017.06.159
pubmed: 28672232