Population genomics and epigenomics of Spirodela polyrhiza provide insights into the evolution of facultative asexuality.
Journal
Communications biology
ISSN: 2399-3642
Titre abrégé: Commun Biol
Pays: England
ID NLM: 101719179
Informations de publication
Date de publication:
16 May 2024
16 May 2024
Historique:
received:
01
08
2023
accepted:
30
04
2024
medline:
17
5
2024
pubmed:
17
5
2024
entrez:
16
5
2024
Statut:
epublish
Résumé
Many plants are facultatively asexual, balancing short-term benefits with long-term costs of asexuality. During range expansion, natural selection likely influences the genetic controls of asexuality in these organisms. However, evidence of natural selection driving asexuality is limited, and the evolutionary consequences of asexuality on the genomic and epigenomic diversity remain controversial. We analyzed population genomes and epigenomes of Spirodela polyrhiza, (L.) Schleid., a facultatively asexual plant that flowers rarely, revealing remarkably low genomic diversity and DNA methylation levels. Within species, demographic history and the frequency of asexual reproduction jointly determined intra-specific variations of genomic diversity and DNA methylation levels. Genome-wide scans revealed that genes associated with stress adaptations, flowering and embryogenesis were under positive selection. These data are consistent with the hypothesize that natural selection can shape the evolution of asexuality during habitat expansions, which alters genomic and epigenomic diversity levels.
Identifiants
pubmed: 38755313
doi: 10.1038/s42003-024-06266-7
pii: 10.1038/s42003-024-06266-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
581Subventions
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 438887884
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 422213951
Organisme : Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
ID : P400PB_186770
Informations de copyright
© 2024. The Author(s).
Références
Kondrashov, A. S. Deleterious mutations and the evolution of sexual reproduction. Nature 336, 435–440 (1988).
pubmed: 3057385
doi: 10.1038/336435a0
Muller, H. J. The relation of recombination to mutational advance. Mutat. Res. 1, 2–9 (1964).
doi: 10.1016/0027-5107(64)90047-8
Case, T. J. & Taper, M. L. On the coexistence and coevolution of asexual and sexual competitors. Evolution 40, 366–387 (1986).
pubmed: 28556058
doi: 10.2307/2408816
Doncaster, C. P., Pound, G. E. & Cox, S. J. The ecological cost of sex. Nature 404, 281–285 (2000).
pubmed: 10749210
doi: 10.1038/35005078
Hartfield, M. Evolutionary genetic consequences of facultative sex and outcrossing. J. Evol. Biol. 29, 5–22 (2016).
pubmed: 26431643
doi: 10.1111/jeb.12770
Green, R. F. & Noakes, D. L. G. Is a little bit of sex as good as a lot. J. Theor. Biol. 174, 87–96 (1995).
doi: 10.1006/jtbi.1995.0081
Lynch, M. & Gabriel, W. Phenotypic evolution and parthenogenesis. Am. Nat. 122, 745–764 (1983).
doi: 10.1086/284169
Simon, J. C., Rispe, C. & Sunnucks, P. Ecology and evolution of sex in aphids. Trends Ecol. Evol. 17, 34–39 (2002).
doi: 10.1016/S0169-5347(01)02331-X
Hebert, P. D. N. Population biology of Daphnia (Crustacea, Daphnidae). Biol. Rev. 53, 387–426 (1978).
doi: 10.1111/j.1469-185X.1978.tb00860.x
Wallace, R. L. Rotifers: Exquisite metazoans. Integr. Comp. Biol. 42, 660–667 (2002).
pubmed: 21708762
doi: 10.1093/icb/42.3.660
Klimeš, L., Klimešová, J., Hendriks, R. & van Groenendael, J. in The Ecology and Evolution of Clonal Plants (eds H. de Kroon & J. van Groenendael) 1–29 (Backhuys Publishers, 1997).
de Meeus, T., Prugnolle, F. & Agnew, P. Asexual reproduction: genetics and evolutionary aspects. Cell Mol. Life Sci. 64, 1355–1372 (2007).
pubmed: 17396223
doi: 10.1007/s00018-007-6515-2
Keightley, P. D. & Otto, S. P. Interference among deleterious mutations favours sex and recombination in finite populations. Nature 443, 89–92 (2006).
pubmed: 16957730
doi: 10.1038/nature05049
Jaron, K. S. et al. Convergent consequences of parthenogenesis on stick insect genomes. Sci. Adv. 8, eabg3842 (2022).
pubmed: 35196080
pmcid: 8865771
doi: 10.1126/sciadv.abg3842
Tucker, A. E., Ackerman, M. S., Eads, B. D., Xu, S. & Lynch, M. Population-genomic insights into the evolutionary origin and fate of obligately asexual Daphnia pulex. Proc. Natl Acad. Sci. USA 110, 15740–15745 (2013).
pubmed: 23959868
pmcid: 3785735
doi: 10.1073/pnas.1313388110
Niederhuth, C. E. & Schmitz, R. J. Covering your bases: inheritance of DNA methylation in plant genomes. Mol. Plant 7, 472–480 (2014).
pubmed: 24270503
doi: 10.1093/mp/sst165
Matzke, M. A. & Mosher, R. A. RNA-directed DNA methylation: an epigenetic pathway of increasing complexity. Nat. Rev. Genet 15, 394–408 (2014).
pubmed: 24805120
doi: 10.1038/nrg3683
Gehring, M. Epigenetic dynamics during flowering plant reproduction: evidence for reprogramming? N. Phytol. 224, 91–96 (2019).
doi: 10.1111/nph.15856
She, W. et al. Chromatin reprogramming during the somatic-to-reproductive cell fate transition in plants. Development 140, 4008–4019 (2013).
pubmed: 24004947
doi: 10.1242/dev.095034
She, W. J. & Baroux, C. Chromatin dynamics in pollen mother cells underpin a common scenario at the somatic-to-reproductive fate transition of both the male and female lineages in Arabidopsis. Front. Plant Sci. 6, 294 (2015).
Slotkin, R. K. et al. Epigenetic reprogramming and small RNA silencing of transposable elements in pollen. Cell 136, 461–472 (2009).
pubmed: 19203581
pmcid: 2661848
doi: 10.1016/j.cell.2008.12.038
Calarco, J. P. et al. Reprogramming of DNA methylation in pollen guides epigenetic inheritance via small RNA. Cell 151, 194–205 (2012).
pubmed: 23000270
pmcid: 3697483
doi: 10.1016/j.cell.2012.09.001
Ingouff, M. et al. Live-cell analysis of DNA methylation during sexual reproduction in Arabidopsis reveals context and sex-specific dynamics controlled by noncanonical RdDM. Genes Dev. 31, 72–83 (2017).
pubmed: 28115468
pmcid: 5287115
doi: 10.1101/gad.289397.116
Bouyer, D. et al. DNA methylation dynamics during early plant life. Genome Biol. 18, 179 (2017).
pubmed: 28942733
pmcid: 5611644
doi: 10.1186/s13059-017-1313-0
Kawakatsu, T., Nery, J. R., Castanon, R. & Ecker, J. R. Dynamic DNA methylation reconfiguration during seed development and germination. Genome. Biol. 18, 171 (2017).
pubmed: 28911331
pmcid: 5599895
doi: 10.1186/s13059-017-1251-x
Narsai, R. et al. Extensive transcriptomic and epigenomic remodelling occurs during Arabidopsis thaliana germination. Genome. Biol. 18, 172 (2017).
pubmed: 28911330
pmcid: 5599894
doi: 10.1186/s13059-017-1302-3
Verhoeven, K. J. F., Jansen, J. J., van Dijk, P. J. & Biere, A. Stress-induced DNA methylation changes and their heritability in asexual dandelions. N. Phytol. 185, 1108–1118 (2010).
doi: 10.1111/j.1469-8137.2009.03121.x
Verhoeven, K. J. & Preite, V. Epigenetic variation in asexually reproducing organisms. Evolution 68, 644–655 (2014).
pubmed: 24274255
doi: 10.1111/evo.12320
Van Antro, M. et al. DNA methylation in clonal duckweed (Lemna minor L.) lineages reflects current and historical environmental exposures. Mol. Ecol. 32, 428–443 (2023).
pubmed: 36324253
doi: 10.1111/mec.16757
Niederhuth, C. E. et al. Widespread natural variation of DNA methylation within angiosperms. Genome Biol. 17, 194 (2016).
Landolt, E., Jäger-Zürn, I. & Schnell, R. Extreme Adaptations in Angiospermous Hydrophytes, 290 (Gebrüder Borntraeger, 1998).
Bog, M., Appenroth, K. J. & Sree, K. S. Key to the determination of taxa of lemnaceae: an update. Nordic. J. Botany 38, e02658 (2020).
Kim, I. Structural differentiation of the connective stalk in Spirodela polyrhiza (L.) schleiden. Appl. Microsc. 46, 83–88 (2016).
doi: 10.9729/AM.2016.46.2.83
Hicks, L. E. Flower production in the lemnaceae. Ohio J. Sci. 32, 115–132 (1932).
Fourounjian, P., Slovin, J. & Messing, J. Flowering and seed production across the lemnaceae. Int J. Mol. Sci. 22, 2733 (2021).
pubmed: 33800476
pmcid: 7962950
doi: 10.3390/ijms22052733
Xu, S. et al. Low genetic variation is associated with low mutation rate in the giant duckweed. Nat. Commun. 10, 1243 (2019).
pubmed: 30886148
pmcid: 6423293
doi: 10.1038/s41467-019-09235-5
Ho, E. K. H., Bartkowska, M., Wright, S. I. & Agrawal, A. F. Population genomics of the facultatively asexual duckweed Spirodela polyrhiza. N. Phytol. 224, 1361–1371 (2019).
doi: 10.1111/nph.16056
Sandler, G., Bartkowska, M., Agrawal, A. F. & Wright, S. I. Estimation of the SNP mutation rate in two vegetatively propagating species of duckweed. G3-Genes Genom. Genet. 10, 4191–4200 (2020).
doi: 10.1534/g3.120.401704
Michael, T. P. et al. Comprehensive definition of genome features in Spirodela polyrhiza by high-depth physical mapping and short-read DNA sequencing strategies. Plant J. 89, 617–635 (2017).
pubmed: 27754575
doi: 10.1111/tpj.13400
Bog, M. et al. Strategies for intraspecific genotyping of duckweed: comparison of five orthogonal methods applied to the giant duckweed Spirodela polyrhiza. Plants (Basel) 11, 3033 (2022).
pubmed: 36432762
doi: 10.3390/plants11223033
Harkess, A. et al. The unusual predominance of maintenance DNA methylation in spirodela polyrhiza. G3 Genes Genomes Genet. 14, jkae004 (2024).
doi: 10.1093/g3journal/jkae004
Chen, J., Glemin, S. & Lascoux, M. Genetic diversity and the efficacy of purifying selection across plant and animal species. Mol. Biol. Evol. 34, 1417–1428 (2017).
pubmed: 28333215
doi: 10.1093/molbev/msx088
McDowell, J. M. et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. Plant Cell 10, 1861–1874 (1998).
pubmed: 9811794
pmcid: 143965
doi: 10.1105/tpc.10.11.1861
Xu, Z. W. et al. Functional genomic analysis of glycoside hydrolase family 1. Plant Mol. Biol. 55, 343–367 (2004).
pubmed: 15604686
doi: 10.1007/s11103-004-0790-1
Pinosio, S. et al. Characterization of the poplar pan-genome by genome-wide identification of structural variation. Mol. Biol. Evol. 33, 2706–2719 (2016).
pubmed: 27499133
pmcid: 5026262
doi: 10.1093/molbev/msw161
Zmienko, A. et al. Athcnv: A map of DNA copy number variations in the Arabidopsis genome. Plant Cell 32, 1797–1819 (2020).
pubmed: 32265262
pmcid: 7268809
doi: 10.1105/tpc.19.00640
Cui, Y., Lu, X. & Gou, X. Receptor-like protein kinases in plant reproduction: current understanding and future perspectives. Plant Commun. 3, 100273 (2022).
pubmed: 35059634
doi: 10.1016/j.xplc.2021.100273
Wang, W. et al. The Spirodela polyrhiza genome reveals insights into its neotenous reduction fast growth and aquatic lifestyle. Nat. Commun. 5, 3311 (2014).
Gramzow L., Theissen G. Stranger than fiction: Loss of MADS-box genes during evolutionary miniaturization of the duckweed body plan. Loss of MADS-box genes in duckweeds. In: The Duckweed Genomes, Compendium of Plant Genomes. (eds. Cao X.H., Fourounjian, P. & Wang, W.) (Springer Nature; Cham, Switzerland, 2020).
Yoshida, A. et al. Characterization of frond and flower development and identification of ft and fd genes from duckweed Lemna aequinoctialis Nd. Front. Plant Sci. 12, 697206 (2021).
pubmed: 34707626
pmcid: 8542802
doi: 10.3389/fpls.2021.697206
Cao, J. et al. Whole-genome sequencing of multiple Arabidopsis thaliana populations. Nat. Genet. 43, 956–963 (2011).
pubmed: 21874002
doi: 10.1038/ng.911
Kang, I. H., Steffen, J. G., Portereiko, M. F., Lloyd, A. & Drews, G. N. The AGL62 MADS domain protein regulates cellularization during endosperm development in Arabidopsis. Plant Cell 20, 635–647 (2008).
pubmed: 18334668
pmcid: 2329934
doi: 10.1105/tpc.107.055137
Hoffmann, T. et al. The identification of type I MADS box genes as the upstream activators of an endosperm-specific invertase inhibitor in Arabidopsis. BMC Plant Biol. 22, 18 (2022).
pubmed: 34991468
pmcid: 8734259
doi: 10.1186/s12870-021-03399-3
Lee, J. & Lee, I. Regulation and function of SOC1, a flowering pathway integrator. J. Exp. Bot. 61, 2247–2254 (2010).
pubmed: 20413527
doi: 10.1093/jxb/erq098
Norton, G. J. et al. Genome wide association mapping of grain and straw biomass traits in the rice Bengal and Assam Aus panel (baap) grown under alternate wetting and drying and permanently flooded irrigation. Front. Plant Sci. 9, 1223 (2018).
pubmed: 30233605
pmcid: 6129953
doi: 10.3389/fpls.2018.01223
Ryu, C. H. et al. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant Cell Environ. 32, 1412–1427 (2009).
pubmed: 19558411
doi: 10.1111/j.1365-3040.2009.02008.x
Lee, S., Kim, J., Han, J. J., Han, M. J. & An, G. Functional analyses of the flowering time gene OsMADS50, the putative suppressor of overexpression of CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant J. 38, 754–764 (2004).
pubmed: 15144377
doi: 10.1111/j.1365-313X.2004.02082.x
Lee, S. & An, G. Diversified mechanisms for regulating flowering time in a short-day plant rice. J. Plant Biol. 50, 241–248 (2007).
doi: 10.1007/BF03030651
Cokus, S. J. et al. Shotgun bisulphite sequencing of the Arabidopsis genome reveals DNA methylation patterning. Nature 452, 215–219 (2008).
pubmed: 18278030
pmcid: 2377394
doi: 10.1038/nature06745
Ibanez, V. N. & Quadrana, L. Shaping inheritance: how distinct reproductive strategies influence DNA methylation memory in plants. Curr. Opin. Genet Dev. 78, 102018 (2023).
pubmed: 36525825
doi: 10.1016/j.gde.2022.102018
Alachiotis, N. & Pavlidis, P. RAiSD detects positive selection based on multiple signatures of a selective sweep and SNP vectors. Commun. Biol. 1, 79 (2018).
pubmed: 30271960
pmcid: 6123745
doi: 10.1038/s42003-018-0085-8
Pavlidis, P., Zivkovic, D., Stamatakis, A. & Alachiotis, N. SweeD: likelihood-based detection of selective sweeps in thousands of genomes. Mol. Biol. Evol. 30, 2224–2234 (2013).
pubmed: 23777627
pmcid: 3748355
doi: 10.1093/molbev/mst112
Harris, A. M. & DeGiorgio, M. A likelihood approach for uncovering selective sweep signatures from haplotype data. Mol. Biol. Evol. 37, 3023–3046 (2020).
pubmed: 32392293
pmcid: 7530616
doi: 10.1093/molbev/msaa115
Demko, V., Ako, E., Perroud, P. F., Quatrano, R. & Olsen, O. A. The phenotype of the CRINKLY4 deletion mutant of Physcomitrella patens suggests a broad role in developmental regulation in early land plants. Planta 244, 275–284 (2016).
pubmed: 27100110
doi: 10.1007/s00425-016-2526-2
Braud, C., Zheng, W. & Xiao, W. Identification and analysis of LNO1-like and AtGLE1-like nucleoporins in plants. Plant Signal Behav. 8, e27376 (2013).
pubmed: 24384931
pmcid: 4091346
doi: 10.4161/psb.27376
Zhao, H., Xing, D. & Li, Q. Q. Unique features of plant cleavage and polyadenylation specificity factor revealed by proteomic studies. Plant Physiol. 151, 1546–1556 (2009).
pubmed: 19748916
pmcid: 2773083
doi: 10.1104/pp.109.142729
Takatsuka, H., Umeda-Hara, C. & Umeda, M. Cyclin-dependent kinase-activating kinases CDKD;1 and CDKD;3 are essential for preserving mitotic activity in Arabidopsis thaliana. Plant J. 82, 1004–1017 (2015).
pubmed: 25942995
doi: 10.1111/tpj.12872
Johnson, K. L., Kibble, N. A., Bacic, A. & Schultz, C. J. A fasciclin-like arabinogalactan-protein (FLA) mutant of Arabidopsis thaliana, fla1, shows defects in shoot regeneration. PLoS One 6, e25154 (2011).
pubmed: 21966441
pmcid: 3178619
doi: 10.1371/journal.pone.0025154
Zhu, M. et al. Robust organ size requires robust timing of initiation orchestrated by focused auxin and cytokinin signalling. Nat. Plants 6, 686–698 (2020).
pubmed: 32451448
pmcid: 7299778
doi: 10.1038/s41477-020-0666-7
Zhao, H. et al. The Arabidopsis thaliana nuclear factor Y transcription factors. Front. Plant Sci. 7, 2045 (2016).
pubmed: 28119722
Chantha, S. C., Gray-Mitsumune, M., Houde, J. & Matton, D. P. The MIDASIN and NOTCHLESS genes are essential for female gametophyte development in Arabidopsis thaliana. Physiol. Mol. Biol. Plants 16, 3–18 (2010).
pubmed: 23572950
pmcid: 3550630
doi: 10.1007/s12298-010-0005-y
Chen, X. et al. Full-length EFOP3 and EFOP4 proteins are essential for pollen intine development in Arabidopsis thaliana. Plant J. 115, 37–51 (2023).
Zhou, Y. et al. Members of the ELMOD protein family specify formation of distinct aperture domains on the Arabidopsis pollen surface. eLife 10, e71061 (2021).
pubmed: 34591014
pmcid: 8483735
doi: 10.7554/eLife.71061
Jossier, M. et al. The Arabidopsis vacuolar anion transporter, AtCLCc, is involved in the regulation of stomatal movements and contributes to salt tolerance. Plant J. 64, 563–576 (2010).
pubmed: 20822503
doi: 10.1111/j.1365-313X.2010.04352.x
Gachomo, E. W., Jimenez-Lopez, J. C., Baptiste, L. J. & Kotchoni, S. O. GIGANTUS1 (GTS1), a member of Transducin/WD40 protein superfamily, controls seed germination, growth and biomass accumulation through ribosome-biogenesis protein interactions in Arabidopsis thaliana. BMC Plant Biol. 14, 37 (2014).
pubmed: 24467952
pmcid: 3914372
doi: 10.1186/1471-2229-14-37
Skalitzky, C. A. et al. Plastids contain a second sec translocase system with essential functions. Plant Physiol. 155, 354–369 (2011).
pubmed: 21051552
doi: 10.1104/pp.110.166546
Jeon, Y., Ahn, H. K., Kang, Y. W. & Pai, H. S. Functional characterization of chloroplast-targeted RbgA GTPase in higher plants. Plant Mol. Biol. 95, 463–479 (2017).
pubmed: 29038916
doi: 10.1007/s11103-017-0664-y
McConnell, J. R. et al. Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411, 709–713 (2001).
pubmed: 11395776
doi: 10.1038/35079635
Schwenk, P. et al. Uncovering a novel function of the CCR4-NOT complex in phytochrome A-mediated light signalling in plants. eLife 10, e63697 (2021).
pubmed: 33783355
pmcid: 8009681
doi: 10.7554/eLife.63697
Farkas, I., Dombradi, V., Miskei, M., Szabados, L. & Koncz, C. Arabidopsis PPP family of serine/threonine phosphatases. Trends Plant Sci. 12, 169–176 (2007).
pubmed: 17368080
doi: 10.1016/j.tplants.2007.03.003
Guo, Z. F., Wang, X. Y., Hu, Z. B., Wu, C. Y. & Shen, Z. G. The pentatricopeptide repeat protein GEND1 is required for root development and high temperature tolerance in Arabidopsis thaliana. Biochem. Biophys. Res. Commun. 578, 63–69 (2021).
pubmed: 34536829
doi: 10.1016/j.bbrc.2021.09.022
Mochizuki, S. et al. The Arabidopsis WAVY GROWTH 2 protein modulates root bending in response to environmental stimuli. Plant Cell 17, 537–547 (2005).
pubmed: 15659627
pmcid: 548824
doi: 10.1105/tpc.104.028530
Liu, C. H. et al. Repair of dna damage induced by the cytidine analog zebularine requires atr and atm in Arabidopsis. Plant Cell 27, 1788–1800 (2015).
pubmed: 26023162
pmcid: 4498198
doi: 10.1105/tpc.114.135467
Bleuyard, J. Y. & White, C. I. The Arabidopsis homologue of Xrcc3 plays an essential role in meiosis. EMBO J. 23, 439–449 (2004).
pubmed: 14726957
pmcid: 1271761
doi: 10.1038/sj.emboj.7600055
Lim, M. H. et al. A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. Plant Cell 16, 731–740 (2004).
pubmed: 14973162
pmcid: 385284
doi: 10.1105/tpc.019331
Disch, S. et al. The E3 ubiquitin ligase BIG BROTHER controls Arabidopsis organ size in a dosage-dependent manner. Curr. Biol. 16, 272–279 (2006).
pubmed: 16461280
doi: 10.1016/j.cub.2005.12.026
Li, H. F. et al. The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res 20, 299–313 (2010).
pubmed: 20038961
doi: 10.1038/cr.2009.143
Krizek, B. A. & Meyerowitz, E. M. The Arabidopsis homeotic genes APETALA3 and PISTILLATA are sufficient to provide the B class organ identity function. Development 122, 11–22 (1996).
pubmed: 8565821
doi: 10.1242/dev.122.1.11
Lee, S., Choi, S. C. & An, G. Rice SVP-group MADS-box proteins, OsMADS22 and OsMADS55, are negative regulators of brassinosteroid responses. Plant J. 54, 93–105 (2008).
pubmed: 18182025
doi: 10.1111/j.1365-313X.2008.03406.x
Fang, W. J., Wang, Z. B., Cui, R. F., Li, J. & Li, Y. H. Maternal control of seed size by EOD3/CYP78A6 in Arabidopsis thaliana. Plant J. 70, 929–939 (2012).
pubmed: 22251317
doi: 10.1111/j.1365-313X.2012.04907.x
Sotelo-Silveira, M. et al. Cytochrome P450 CYP78A9 is involved in Arabidopsis reproductive development. Plant Physiol. 162, 779–799 (2013).
pubmed: 23610218
pmcid: 3668070
doi: 10.1104/pp.113.218214
Qi, X. L., Liu, C. L., Song, L. L., Li, Y. H. & Li, M. Pacyp78a9, a cytochrome P450, regulates fruit size in sweet cherry (Prunus avium L.). Front Plant Sci. 8, 2076 (2017).
pubmed: 29259616
pmcid: 5723407
doi: 10.3389/fpls.2017.02076
Ellegren, H. & Galtier, N. Determinants of genetic diversity. Nat. Rev. Genet 17, 422–433 (2016).
pubmed: 27265362
doi: 10.1038/nrg.2016.58
Zhou, Y. F. et al. The population genetics of structural variants in grapevine domestication. Nat. Plants 5, 965–979 (2019).
pubmed: 31506640
doi: 10.1038/s41477-019-0507-8
Guan, J. et al. Genome structure variation analyses of peach reveal population dynamics and a 1.67 Mb causal inversion for fruit shape. Genome Biol. 22, 13 (2021).
pubmed: 33402202
pmcid: 7784018
doi: 10.1186/s13059-020-02239-1
Underwood, C. J. et al. Epigenetic activation of meiotic recombination near Arabidopsis thaliana centromeres via loss of H3K9me2 and non-CG DNA methylation. Genome Res. 28, 519–531 (2018).
pubmed: 29530927
pmcid: 5880242
doi: 10.1101/gr.227116.117
Santamaria, L. Why are most aquatic plants widely distributed? dispersal, clonal growth and small-scale heterogeneity in a stressful environment. Acta Oecol. 23, 137–154 (2002).
doi: 10.1016/S1146-609X(02)01146-3
Wang, Y. J. et al. Invasive alien plants benefit more from clonal integration in heterogeneous environments than natives. N. Phytol. 216, 1072–1078 (2017).
doi: 10.1111/nph.14820
Gutekunst, J. et al. Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nat. Ecol. Evol. 2, 567–573 (2018).
pubmed: 29403072
doi: 10.1038/s41559-018-0467-9
Appenroth, K.J.; et al. Photophysiology of turion formation and germination in Spirodela polyrhiza. Biol. Plant. 38, 95–106 (1996)
Schubert, M., Lindgreen, S. & Orlando, L. AdapterRemoval v2: rapid adapter trimming, identification, and read merging. BMC Res. Notes 9, 88 (2016).
pubmed: 26868221
pmcid: 4751634
doi: 10.1186/s13104-016-1900-2
Cao, H. X. et al. The map-based genome sequence of Spirodela polyrhiza aligned with its chromosomes, a reference for karyotype evolution. N. Phytol. 209, 354–363 (2016).
doi: 10.1111/nph.13592
Li, H. et al. The sequence alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943
pmcid: 2723002
doi: 10.1093/bioinformatics/btp352
McKenna, A. et al. The genome analysis toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
pubmed: 20644199
pmcid: 2928508
doi: 10.1101/gr.107524.110
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
pubmed: 21653522
pmcid: 3137218
doi: 10.1093/bioinformatics/btr330
Cingolani, P. et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly 6, 80–92 (2012).
pubmed: 22728672
pmcid: 3679285
doi: 10.4161/fly.19695
Nelson, C. W., Moncla, L. H. & Hughes, A. L. SNPGenie: estimating evolutionary parameters to detect natural selection using pooled next-generation sequencing data. Bioinformatics 31, 3709–3711 (2015).
pubmed: 26227143
pmcid: 4757956
doi: 10.1093/bioinformatics/btv449
Zhan, X., Hu, Y., Li, B., Abecasis, G. R. & Liu, D. J. RVTESTS: an efficient and comprehensive tool for rare variant association analysis using sequence data. Bioinformatics 32, 1423–1426 (2016).
pubmed: 27153000
pmcid: 4848408
doi: 10.1093/bioinformatics/btw079
Purcell, S. et al. PLINK: A tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901
pmcid: 1950838
doi: 10.1086/519795
Raj, A., Stephens, M. & Pritchard, J. K. fastStructure: variational inference of population structure in large SNP data sets. Genetics 197, 573–U207 (2014).
pubmed: 24700103
pmcid: 4063916
doi: 10.1534/genetics.114.164350
Zhang, C., Dong, S. S., Xu, J. Y., He, W. M. & Yang, T. L. PopLDdecay: a fast and effective tool for linkage disequilibrium decay analysis based on variant call format files. Bioinformatics 35, 1786–1788 (2019).
pubmed: 30321304
doi: 10.1093/bioinformatics/bty875
Camacho, C. et al. BLAST +: architecture and applications. BMC Bioinform. 10, 421 (2009).
Yin, J. M. et al. A high-quality genome of taro (Colocasia esculenta(L.) Schott), one of the world’s oldest crops. Mol. Ecol. Resour. 21, 68–77 (2021).
pubmed: 32790213
doi: 10.1111/1755-0998.13239
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
pubmed: 31070718
pmcid: 6821337
doi: 10.1093/bioinformatics/btz305
Flouri, T. et al. The phylogenetic likelihood library. Syst. Biol. 64, 356–362 (2015).
pubmed: 25358969
doi: 10.1093/sysbio/syu084
Darriba, D. et al. ModelTest-NG: a new and scalable tool for the selection of DNA and protein evolutionary models. Mol. Biol. Evol. 37, 291–294 (2020).
pubmed: 31432070
doi: 10.1093/molbev/msz189
Letunic, I. & Bork, P. Interactive tree Of life (iTOL) v4: recent updates and new developments. Nucleic Acids Res. 47, W256–W259 (2019).
pubmed: 30931475
pmcid: 6602468
doi: 10.1093/nar/gkz239
Huerta-Cepas, J., Dopazo, J. & Gabaldon, T. ETE: a python environment for tree exploration. BMC Bioinforma. 11, 24 (2010).
doi: 10.1186/1471-2105-11-24
Meinke, D. W. Genome-wide identification of EMBRYO-DEFECTIVE (EMB) genes required for growth and development in Arabidopsis. N. Phytol. 226, 306–325 (2020).
doi: 10.1111/nph.16071
Racimo, F. Testing for ancient selection using cross-population allele frequency differentiation. Genetics 202, 733–750 (2016).
pubmed: 26596347
doi: 10.1534/genetics.115.178095
Bolger, A. M., Lohse, M. & Usadel, B. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30, 2114–2120 (2014).
pubmed: 24695404
pmcid: 4103590
doi: 10.1093/bioinformatics/btu170
Schmitz, R. J. et al. Patterns of population epigenomic diversity. Nature 495, 193–198 (2013).
pubmed: 23467092
pmcid: 3798000
doi: 10.1038/nature11968
Kawakatsu, T. et al. Epigenomic diversity in a global collection of arabidopsis thaliana accessions. Cell 166, 492–505 (2016).
pubmed: 27419873
pmcid: 5172462
doi: 10.1016/j.cell.2016.06.044
Krueger, F. & Andrews, S. R. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics 27, 1571–1572 (2011).
pubmed: 21493656
pmcid: 3102221
doi: 10.1093/bioinformatics/btr167
Wang, W. Q. & Messing, J. High-throughput sequencing of three lemnoideae (duckweeds) chloroplast genomes from total DNA. PLoS One 6, e24670 (2011).
pubmed: 21931804
pmcid: 3170387
doi: 10.1371/journal.pone.0024670
Schultz, M. D., Schmitz, R. J. & Ecker, J. R. Leveling’ the playing field for analyses of single-base resolution DNA methylomes. Trends Genet. 28, 583–585 (2012).
pubmed: 23131467
pmcid: 3523709
doi: 10.1016/j.tig.2012.10.012
Akalin, A. et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome. Biol. 13, R87 (2012).
Gel, B. et al. regioneR: an R/Bioconductor package for the association analysis of genomic regions based on permutation tests. Bioinformatics 32, 289–291 (2016).
pubmed: 26424858
doi: 10.1093/bioinformatics/btv562
Huang, X. S., Zhang, S. L., Li, K. Q., Thimmapuram, J. & Xie, S. J. ViewBS: a powerful toolkit for visualization of high-throughput bisulfite sequencing data. Bioinformatics 34, 708–709 (2018).
pubmed: 29087450
doi: 10.1093/bioinformatics/btx633
Yu, G. C., Lam, T. T. Y., Zhu, H. C. & Guan, Y. Two methods for mapping and visualizing associated data on phylogeny using ggtree. Mol. Biol. Evol. 35, 3041–3043 (2018).
pubmed: 30351396
pmcid: 6278858
doi: 10.1093/molbev/msy194
Wang, L. G. et al. Treeio: An R package for phylogenetic tree input and output with richly annotated and associated data. Mol. Biol. Evol. 37, 599–603 (2020).
pubmed: 31633786
doi: 10.1093/molbev/msz240
Paradis, E., Claude, J. & Strimmer, K. APE: Analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004).
pubmed: 14734327
doi: 10.1093/bioinformatics/btg412
Revell, L. J. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223 (2012).
doi: 10.1111/j.2041-210X.2011.00169.x