Genomic insights into local adaptation of upland cotton in China and Pakistan.
Journal
TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik
ISSN: 1432-2242
Titre abrégé: Theor Appl Genet
Pays: Germany
ID NLM: 0145600
Informations de publication
Date de publication:
20 May 2024
20 May 2024
Historique:
received:
22
12
2023
accepted:
14
04
2024
medline:
20
5
2024
pubmed:
20
5
2024
entrez:
19
5
2024
Statut:
epublish
Résumé
Different kinship and resistance to cotton leaf curl disease (CLCuD) and heat were found between upland cotton cultivars from China and Pakistan. 175 SNPs and 82 InDels loci related to yield, fiber quality, CLCuD, and heat resistance were identified. Elite alleles found in Pakistani accessions aided local adaptation to climatic condition of two countries. Adaptation of upland cotton (Gossypium hirsutum) beyond its center of origin is expected to be driven by tailoring of the genome and genes to enhance yield and quality in new ecological niches. Here, resequencing of 456 upland cotton accessions revealed two distinct kinships according to the associated country. Fiber quality and lint percentage were consistent across kinships, but resistance to cotton leaf curl disease (CLCuD) and heat was distinctly exhibited by accessions from Pakistan, illustrating highly local adaption. A total of 175 SNP and 82 InDel loci related to yield, fiber quality, CLCuD and heat resistance were identified; among them, only two overlapped between Pakistani and Chinese accessions underscoring the divergent domestication and improvement targets in each country. Loci associated with resistance alleles to leaf curl disease and high temperature were largely found in Pakistani accessions to counter these stresses prevalent in Pakistan. These results revealed that breeding activities led to the accumulation of unique alleles and helped upland cotton become adapted to the respective climatic conditions, which will contribute to elucidating the genetic mechanisms that underlie resilience traits and help develop climate-resilient cotton cultivars for use worldwide.
Identifiants
pubmed: 38764078
doi: 10.1007/s00122-024-04624-x
pii: 10.1007/s00122-024-04624-x
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
136Subventions
Organisme : National Science Foundation of China and Pakistan Science Foundation
ID : 31661143016
Organisme : Leading Innovative and Entrepreneur Team Introduction Program of Zhejiang
ID : 2019R01002
Organisme : Fundamental Research Funds for the Central Universities in China
ID : 226-2022-00100
Informations de copyright
© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Références
Briddon RW, Markham PG (2000) Cotton leaf curl virus disease. Virus Res 71:151–159
pubmed: 11137169
Cai JH, Xie K, Lin L, Qin BX, Chen BS, Meng JR, Liu YL (2010) Cotton leaf curl Multan virus newly reported to be associated with cotton leaf curl disease in China. Plant Pathol 59:794–795
Chen G, Du XM (2006) Genetic diversity of source germplasm of Upland cotton in China as determined by SSR marker analysis. Yi Chuan Xue Bao 33:733–745
pubmed: 16939008
Danecek P, Auton A, Abecasis G, Albers CA, Banks E, DePristo MA, Handsaker RE, Lunter G, Marth GT, Sherry ST, McVean G, Durbin R, Genomes Project Analysis (2011) The variant call format and VCFtools. Bioinformatics 27:2156–2158
pubmed: 21653522
pmcid: 3137218
Fang L, Gong H, Hu Y, Liu CX, Zhou BL, Huang T, Wang YK, Chen SQ, Fang DD, Du XM, Chen H, Chen JD, Wang S, Wang Q, Wan Q, Liu BL, Pan MQ, Chang LJ, Wu HT, Mei GF, Xiang D, Li XH, Cai CP, Zhu XF, Chen ZJ, Han B, Chen XY, Guo WZ, Zhang TZ, Huang XH (2017a) Genomic insights into divergence and dual domestication of cultivated allotetraploid cottons. Genome Biol 18:33–46
pubmed: 28219438
pmcid: 5317056
Fang L, Wang Q, Hu Y, Jia Y, Chen J, Liu B, Zhang Z, Guan X, Chen S, Zhou B, Mei G, Sun J, Pan Z, He S, Xiao S, Shi W, Gong W, Liu J, Ma J, Cai C, Zhu X, Guo W, Du X, Zhang T (2017b) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49:1089–1098
pubmed: 28581501
Gou M, Balint-Kurti P, Xu M, Yang Q (2023) Quantitative disease resistance: multifaceted players in plant defense. J Integr Plant Biol 65:594–610
pubmed: 36448658
Han ZG, Hu Y, Tian Q, Cao Y, Si A, Si Z, Zang Y, Xu C, Shen W, Dai F, Liu X, Fang L, Chen H, Zhang T (2020) Genomic signatures and candidate genes of lint yield and fibre quality improvement in Upland cotton in Xinjiang. Plant Biotechnol J 18:2002–2014
pubmed: 32030869
pmcid: 7540456
Han ZG, Chen H, Cao YW, He L, Si ZF, Hu Y, Lin H, Ning XZ, Li JL, Ma Q, Liu FJ, Zang YH, Zhao T, Fang L, Zhu XF, Zhang TZ (2022) Genomic insights into genetic improvement of upland cotton in the world’s largest growing region. Ind Crops Prod 183:114929
He S, Sun G, Geng X, Gong W, Dai P, Jia Y, Shi W, Pan Z, Wang J, Wang L, Xiao S, Chen B, Cui S, You C, Xie Z, Wang F, Sun J, Fu G, Peng Z, Hu D, Wang L, Pang B, Du X (2021) The genomic basis of geographic differentiation and fiber improvement in cultivated cotton. Nat Genet 53:916–924
pubmed: 33859417
Hoffmann AA, Sgro CM (2011) Climate change and evolutionary adaptation. Nature 470:479–485
pubmed: 21350480
Hu Y, Chen J, Fang L, Zhang Z, Ma W, Niu Y, Ju L, Deng J, Zhao T, Lian J, Baruch K, Fang D, Liu X, Ruan YL, Rahman MU, Han J, Wang K, Wang Q, Wu H, Mei G, Zang Y, Han Z, Xu C, Shen W, Yang D, Si Z, Dai F, Zou L, Huang F, Bai Y, Zhang Y, Brodt A, Ben-Hamo H, Zhu X, Zhou B, Guan X, Zhu S, Chen X, Zhang T (2019) Gossypium barbadense and Gossypium hirsutum genomes provide insights into the origin and evolution of allotetraploid cotton. Nat Genet 51:739–748
pubmed: 30886425
Huang ZK (2007) Cotton varieties and their genealogy in China. China Agriculture Press, Beijing
Huson DH, Richter DC, Rausch C, Dezulian T, Franz M, Rupp R (2007) Dendroscope: an interactive viewer for large phylogenetic trees. BMC Bioinf 8:460
Kadota Y, Liebrand TWH, Goto Y, Sklenar J, Derbyshire P, Menke FLH, Torres MA, Molina A, Zipfel C, Coaker G, Shirasu K (2019) Quantitative phosphoproteomic analysis reveals common regulatory mechanisms between effector- and PAMP-triggered immunity in plants. New Phytol 221:2160–2175
pubmed: 30300945
Kang HM, Sul JH, Service SK, Zaitlen NA, Kong SY, Freimer NB, Sabatti C, Eskin E (2010) Variance component model to account for sample structure in genome-wide association studies. Nat Genet 42:348–354
pubmed: 20208533
pmcid: 3092069
Kimura S, Hunter K, Vaahtera L, Tran HC, Citterico M, Vaattovaara A, Rokka A, Stolze SC, Harzen A, Meissner L, Wilkens MMT, Hamann T, Toyota M, Nakagami H, Wrzaczek M (2020) CRK2 and C-terminal phosphorylation of NADPH oxidase RBOHD regulate reactive oxygen species production in arabidopsis. Plant Cell 32:1063–1080
pubmed: 32034035
pmcid: 7145479
Li H, Durbin R (2009) Fast and accurate short read alignment with Burrows–Wheeler transform. Bioinformatics 25:1754–1760
pubmed: 19451168
pmcid: 2705234
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, Genome Project Data Processing (2009) The sequence alignment/Map format and SAMtools. Bioinformatics 25:2078–2079
pubmed: 19505943
pmcid: 2723002
Li C, He X, Luo X, Xu L, Liu L, Min L, Jin L, Zhu L, Zhang X (2014) Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression. Plant Physiol 166:2179–2194
pubmed: 25301887
pmcid: 4256851
Li Z, Wang P, You C, Yu J, Zhang X, Yan F, Ye Z, Shen C, Li B, Kai; G, Nian; L, Thyssen; GN, David DF, Keith L, Zhang X, Wang M, Tu L, (2020) Combined GWAS and eQTL analysis uncovers a genetic regulatory network orchestrating the initiation of secondary cell wall development in cotton. New Phytol 226:1738–1752
pubmed: 32017125
Li Y, Si Z, Wang G, Shi Z, Chen J, Qi G, Jin S, Han Z, Gao W, Tian Y, Mao Y, Fang L, Hu Y, Chen H, Zhu X, Zhang T (2023) Genomic insights into the genetic basis of cotton breeding in China. Mol Plant 16:662–677
pubmed: 36738104
Ma Z, He S, Wang X, Sun J, Zhang Y, Zhang G, Wu L, Li Z, Liu Z, Sun G, Yan Y, Jia Y, Yang J, Pan Z, Gu Q, Li X, Sun Z, Dai P, Liu Z, Gong W, Wu J, Wang M, Liu H, Feng K, Ke H, Wang J, Lan H, Wang G, Peng J, Wang N, Wang L, Pang B, Peng Z, Li R, Tian S, Du X (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50:803–813
pubmed: 29736016
Moutherat C, Tengberg M, Haquet JF, Mille B (2002) First evidence of cotton at Neolithic Mehrgarh, Pakistan: analysis of mineralized fibres from a copper bead. J Archaeol Sci 29:1393–1401
Paterson AH, Brubaker CL, Wendel JF (1993) A rapid method for extraction of cotton (Gossypium spp.) genomic DNA suitable for RFLP or PCR analysis. Plant Mol Biol Report 11:122–127
Pelsenstein J (1989) PHYLIP:phylogeny inference package(version 3.2). Cladistics 5:164–166
Poland JA, Bradbury PJ, Buckler ES, Nelson RJ (2011) Genome-wide nested association mapping of quantitative resistance to northern leaf blight in maize. Proc Natl Acad Sci U S A 108:6893–6898
pubmed: 21482771
pmcid: 3084105
Rahman MU, Khan AQ, Rahmat Z, Iqbal MA, Zafar Y (2017) Genetics and genomics of cotton leaf curl disease, its viral causal agents and whitefly vector: a way forward to sustain cotton fiber security. Front Plant Sci 8:1157
pubmed: 28725230
pmcid: 5495822
Rahman MU, Zafar Y, Zhang T (2021) Cotton precision breeding. Springer
Razzaq A, Zafar MM, Ali A, Hafeez A, Yuan Y (2021) Cotton germplasm improvement and progress in Pakistan. J Cotton Res 4:1–14
Scheffers BR, De Meester L, Bridge TC, Hoffmann AA, Pandolfi JM, Corlett RT, Butchart SH, Pearce-Kelly P, Kovacs KM, Dudgeon D, Pacifici M, Rondinini C, Foden WB, Martin TG, Mora C, Bickford D, Watson JE (2016) The broad footprint of climate change from genes to biomes to people. Science 354:aaf7671
pubmed: 27846577
Shahzad K, Mubeen I, Zhang M, Zhang XX, Wu JY, Xing CZ (2022) Progress and perspective on cotton breeding in Pakistan. J Cotton Res 5:29–46
Teskey R, Wertin T, Bauweraerts I, Ameye M, McGuire MA, Steppe K (2015) Responses of tree species to heat waves and extreme heat events. Plant Cell Environ 38:1699–1712
pubmed: 25065257
Thatcher LF, Cevik V, Grant M, Zhai B, Jones JD, Manners JM, Kazan K (2016) Characterization of a JAZ7 activation-tagged Arabidopsis mutant with increased susceptibility to the fungal pathogen Fusarium oxysporum. J Exp Bot 67:2367–2386
pubmed: 26896849
pmcid: 4809290
Tian XM (2016) Xinjiang cotton theory and modern cotton technology. Science Press, Beijing
Todesco M, Owens GL, Bercovich N, Legare JS, Soudi S, Burge DO, Huang K, Ostevik KL, Drummond EBM, Imerovski I, Lande K, Pascual-Robles MA, Nanavati M, Jahani M, Cheung W, Staton SE, Munos S, Nielsen R, Donovan LA, Burke JM, Yeaman S, Rieseberg LH (2020) Massive haplotypes underlie ecotypic differentiation in sunflowers. Nature 584:602–607
pubmed: 32641831
Wang K, Li M, Hakonarson H (2010) ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res 38:e164
pubmed: 20601685
pmcid: 2938201
Wang M, Tu L, Lin M, Lin Z, Wang P, Yang Q, Ye Z, Shen C, Li J, Zhang L, Zhou X, Nie X, Li Z, Guo K, Ma Y, Huang C, Jin S, Zhu L, Yang X, Min L, Yuan D, Zhang Q, Lindsey K, Zhang X (2017) Asymmetric subgenome selection and cis-regulatory divergence during cotton domestication. Nat Genet 49:579–587
pubmed: 28263319
Yang J, Lee SH, Goddard ME, Visscher PM (2011) GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet 88:76–82
pubmed: 21167468
pmcid: 3014363
Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46:100–106
pubmed: 24473328
pmcid: 3989144
Yang Z, Ge X, Yang Z, Qin W, Sun G, Wang Z, Li Z, Liu J, Wu J, Wang Y, Lu L, Wang P, Mo H, Zhang X, Li F (2019) Extensive intraspecific gene order and gene structural variations in upland cotton cultivars. Nat Commun 10:2989
pubmed: 31278252
pmcid: 6611876
Zhao J, Sun Y, Li X, Li Y (2022) CYSTEINE-RICH RECEPTOR-LIKE KINASE5 (CRK5) and CRK22 regulate the response to Verticillium dahliae toxins. Plant Physiol 190:714–731
pubmed: 35674361
pmcid: 9434262
Zhou H, Alexander D, Lange K (2011) A quasi-Newton acceleration for high-dimensional optimization algorithms. Stat Comput 21:261–273
pubmed: 21359052
pmcid: 3045213
Zou YP, Hou XH, Wu Q, Chen JF, Li ZW, Han TS, Niu XM, Yang L, Xu YC, Zhang J, Zhang FM, Tan D, Tian Z, Gu H, Guo YL (2017) Adaptation of Arabidopsis thaliana to the Yangtze River basin. Genome Biol 18:239–250
pubmed: 29284515
pmcid: 5745794