Combined assessment of lysine and N-acetyl cadaverine levels assist as a potential biomarker of the smoker periodontitis.
N-acetyl cadaverine
N1,N8-diacetyl spermidine
Periodontitis
Polyamines
Reverse smokers
Smokers
Journal
Amino acids
ISSN: 1438-2199
Titre abrégé: Amino Acids
Pays: Austria
ID NLM: 9200312
Informations de publication
Date de publication:
08 Jun 2024
08 Jun 2024
Historique:
received:
25
01
2024
accepted:
16
04
2024
medline:
9
6
2024
pubmed:
9
6
2024
entrez:
8
6
2024
Statut:
epublish
Résumé
Periodontitis is an inflammatory condition of supporting structures of teeth leading to attachment and bone loss. Cigarette smoking is the single most important and modifiable risk factor with 5 to 20-fold susceptibility for periodontal diseases. Reverse smoking is a peculiar habit of smoking where the lit end is kept inside the mouth, which is predominant in the northern coastal districts of Andhra Pradesh. Polyamines are biologically active amines involved in tissue regeneration and modulation of inflammation. The study aimed to evaluate polyamines and check their utility as a marker in detection of periodontitis among different groups. Total polyamine levels showed significant increase in reverse smokers with periodontitis when compared to the other groups. Qualitative analysis by thin layer chromatography showed three polyamine bands with varying intensity among the different groups. Mass spectrometric and NMR analyses of the three bands identified them as N1, N8-diacetyl spermidine, N-acetyl cadaverine and lysine. Most significantly elevated levels of lysine was observed in the smoker and reverse smoker periodontitis groups when compared to healthy and non-smoker periodontitis groups. The significantly elevated levels of N-acetyl cadaverine could be responsible for the more destruction of periodontium in the reverse smoker group. Antioxidant potential decreased significantly in different smoker periodontitis groups. The present study suggests that the quantitative analysis of salivary polyamines, lysine and N-acetyl cadaverine can aid as an easy noninvasive diagnostic method for assessing the periodontal status, especially in smokers.
Identifiants
pubmed: 38851640
doi: 10.1007/s00726-024-03396-4
pii: 10.1007/s00726-024-03396-4
doi:
Substances chimiques
Cadaverine
L90BEN6OLL
Biomarkers
0
Lysine
K3Z4F929H6
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
41Informations de copyright
© 2024. The Author(s).
Références
Andörfer L, Holtfreter B, Weiss S, Matthes R, Pitchika V, Schmidt CO, Samietz S, Kastenmüller G, Nauck M, Völker U, Völzke H, Csonka LN, Suhre K, Pietzner M, Kocher T (2021) Salivary metabolites associated with a 5-year tooth loss identified in a population-based setting. BMC Med 19(1):161. https://doi.org/10.1186/s12916-021-02035-z
doi: 10.1186/s12916-021-02035-z
pubmed: 34256740
pmcid: 8278731
Bachtiar EW, Gusliana DS, Bachtiar BM (2021) Correlation between the extent of smoking, salivary protein profiles, and dental caries in young adult smokers. Saudi Dental J 33(7):533–537. https://doi.org/10.1016/j.sdentj.2020.09.002
doi: 10.1016/j.sdentj.2020.09.002
Beauchamp C, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44(1):276–287. https://doi.org/10.1016/0003-2697(71)90370-8
doi: 10.1016/0003-2697(71)90370-8
pubmed: 4943714
Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. LWT Food Sci Technol 28(1):25–30. https://doi.org/10.1016/S0023-6438(95)80008-5
doi: 10.1016/S0023-6438(95)80008-5
Chakradhar VL, Naik SR (2007) Polyamines in inflammation and their modulation by conventional anti-inflammatory drugs. Indian J Exp Biol 45(7):649–653
pubmed: 17821863
Cortelli SC, Máximo PDM, Peralta FS, Silva RAD, Rovai ES, Costa FO, Aquino DR, Rodrigues E, Cortelli JR (2021) Salivary nitrite and systemic biomarkers in obese individuals with periodontitis submitted to FMD. Brazilian Dental Journal 32:27–36
doi: 10.1590/0103-6440202103782
pubmed: 34614058
D’Aiuto F, Sabbah W, Netuveli G, Donos N, Hingorani AD, Deanfield J, Tsakos G (2008) Association of the metabolic syndrome with severe periodontitis in a large us population-based survey. J Clin Endocrinol Metab 93(10):3989–3994
doi: 10.1210/jc.2007-2522
pubmed: 18682518
De Smit MJ, Westra J, Brouwer E, Janssen KMJ, Vissink A, Van Winkelhoff AJ (2015) Commentary: periodontitis and rheumatoid arthritis: what do we know? J Periodontol 86(9):1013–1019. https://doi.org/10.1902/jop.2015.150088
doi: 10.1902/jop.2015.150088
pubmed: 25968957
Giannobile WV, Beikler T, Kinney JS, Ramseier CA, Morelli T, Wong DT (2009) Saliva as a diagnostic tool for periodontal disease: current state and future directions. Periodontol 2000(50):52
doi: 10.1111/j.1600-0757.2008.00288.x
Göktürk N, Şahin H, Bayramoğlu F, Çakıcı Ç, Büyükuslu N, Yiğit P, Yiğitbaşı T (2022) Could the increase in oxidative stress be the reason for the increased polyamine levels in diabetic obese and non-diabetic obese patients? ACTA Pharmaceutica Sciencia. 60(3):301
doi: 10.23893/1307-2080.APS.6020
Goldberg S, Kozlovsky A, Gordon D, Gelernter I, Sintov A, Rosenberg M (1994) Cadaverine as a putative component of oral malodor. J Dent Res 73(6):1168–1172. https://doi.org/10.1177/00220345940730060701
doi: 10.1177/00220345940730060701
pubmed: 8046106
Haber J, Wattles J, Crowley M, Mandell R, Joshipura K, Kent RL (1993) Evidence for cigarette smoking as a major risk factor for periodontitis. J Periodontol 64(1):16–23. https://doi.org/10.1902/jop.1993.64.1.16
doi: 10.1902/jop.1993.64.1.16
pubmed: 8426285
Henderson Pozzi M, Gawandi V, Fitzpatrick PF (2009) pH Dependence of a mammalian polyamine oxidase: insights into substrate specificity and the role of lysine 315. Biochemistry 48(7):1508–1516. https://doi.org/10.1021/bi802227m
doi: 10.1021/bi802227m
pubmed: 19199575
Igarashi K, Kashiwagi K (2018) Effects of polyamines on protein synthesis and growth of escherichia coli. J Biol Chem 293(48):18702–18709. https://doi.org/10.1074/jbc.TM118.003465
doi: 10.1074/jbc.TM118.003465
pubmed: 30108177
pmcid: 6290148
Ishida H, Iwayama Y, Daikuhara Y (1983) Changes in polyamine metabolism during experimental periodontitis in dogs and the role of putrescine in recovery. Arch Oral Biol 28(1):51–60. https://doi.org/10.1016/0003-9969(83)90026-2
doi: 10.1016/0003-9969(83)90026-2
pubmed: 6575737
Kolte A, Kolte R, Laddha R (2012) Effect of smoking on salivary composition and periodontal status. J Indian Soc Periodontol 16(3):350. https://doi.org/10.4103/0972-124X.100909
doi: 10.4103/0972-124X.100909
pubmed: 23162327
pmcid: 3498702
Kuboniwa M, Sakanaka A, Hashino E, Bamba T, Fukusaki E, Amano A (2016) Prediction of periodontal inflammation via metabolic profiling of saliva. J Dent Res 95(12):1381–1386. https://doi.org/10.1177/0022034516661142
doi: 10.1177/0022034516661142
pubmed: 27470067
Levine M, Lohinai ZM (2021) Resolving the contradictory functions of lysine decarboxylase and butyrate in periodontal and intestinal diseases. J Clin Med 10(11):2360. https://doi.org/10.3390/jcm10112360
doi: 10.3390/jcm10112360
pubmed: 34072136
pmcid: 8198195
Lim HK, Rahim AB, Leo VI, Das S, Lim TC, Uemura T, Igarashi K, Common J, Vardy LA (2018) Polyamine regulator AMD1 promotes cell migration in epidermal wound healing. J Investig Dermatol 138(12):2653–2665. https://doi.org/10.1016/j.jid.2018.05.029
doi: 10.1016/j.jid.2018.05.029
pubmed: 29906410
Lima A, Didugu BGL, Chunduri AR, Rajan R, Jha A, Mamillapalli A (2023) Thermal tolerance role of novel polyamine, caldopentamine, identified in fifth instar Bombyx mori. Amino Acids 55(2):287–298. https://doi.org/10.1007/s00726-022-03226-5
doi: 10.1007/s00726-022-03226-5
pubmed: 36562834
Michael GN, Henry HT, Perry RK, Fermin AC (2018) Caranza's clinical periodontology. Saunders Elsevier, St. Louis, Missouri
Mustafavi SH, Naghdi Badi H, Sękara A, Mehrafarin A, Janda T, Ghorbanpour M, Rafiee H (2018) Polyamines and their possible mechanisms involved in plant physiological processes and elicitation of secondary metabolites. Acta Physiol Plant 40(6):102. https://doi.org/10.1007/s11738-018-2671-2
doi: 10.1007/s11738-018-2671-2
Nosratabadi SF, Sariri R, Yaghmaei P, Taheri M, Ghadimi A, Ghafoori H (2012) Alternations of antioxidant activity in saliva in smokers. J Phys Theor Chem 8:305–310
Ozeki M, Nozaki T, Aoki J, Bamba T, Jensen KR, Murakami S, Toyoda M (2016) Metabolomic analysis of gingival crevicular fluid using gas chromatography/mass spectrometry. Mass Spectrom (Tokyo, Japan) 5(1):A0047. https://doi.org/10.5702/massspectrometry.A0047
doi: 10.5702/massspectrometry.A0047
Papapanou PN, Sanz M, Buduneli N, Dietrich T, Feres M, Fine DH, Flemmig TF, Garcia R, Giannobile WV, Graziani F (2018) Periodontitis: consensus report of workgroup 2 of the 2017 World workshop on the classification of periodontal and peri-implant diseases and conditions. J Periodontol 89:S173–S182
doi: 10.1002/JPER.17-0721
pubmed: 29926951
Pegg AE (2008) Spermidine/spermine-N 1-acetyltransferase: a key metabolic regulator. Am J Physiol-Endocrinol Metabolism 294(6):E995–E1010
doi: 10.1152/ajpendo.90217.2008
Pindborg JJ, Mehta FS, Gupta PC, Daftary DK, Smith CJ (1971) Reverse smoking in Andhra Pradesh, India: a study of palatal lesions among 10,169 villagers. Br J Cancer 25(1):10–20
doi: 10.1038/bjc.1971.2
pubmed: 5581290
pmcid: 2008558
Sakanaka A, Kuboniwa M, Hashino E, Bamba T, Fukusaki E, Amano A (2017) Distinct signatures of dental plaque metabolic byproducts dictated by periodontal inflammatory status. Sci Rep 7(1):42818. https://doi.org/10.1038/srep42818
doi: 10.1038/srep42818
pubmed: 28220901
pmcid: 5318866
Sanz M, Marco Del Castillo A, Jepsen S, Gonzalez-Juanatey JR, D’Aiuto F, Bouchard P, Chapple I, Dietrich T, Gotsman I, Graziani F, Herrera D, Loos B, Madianos P, Michel J, Perel P, Pieske B, Shapira L, Shechter M, Tonetti M, Wimmer G (2020) Periodontitis and cardiovascular diseases: consensus report. J Clinical Periodontol 47(3):268–288. https://doi.org/10.1111/jcpe.13189
doi: 10.1111/jcpe.13189
Vrijsen S, Houdou M, Cascalho A, Eggermont J, Vangheluwe P (2023) Polyamines in parkinson’s disease: balancing between neurotoxicity and neuroprotection. Annu Rev Biochem 92(1):435–464. https://doi.org/10.1146/annurev-biochem-071322-021330
doi: 10.1146/annurev-biochem-071322-021330
pubmed: 37018845
WHO FACT SHEET (2022) https://www.who.int/news-room/fact-sheets/detail/tobacco Accessed 2 June 2023 (n.d.) dataset
Yamamoto T, Hinoi E, Fujita H, Iezaki T, Takahata Y, Takamori M, Yoneda Y (2012) The natural polyamines spermidine and spermine prevent bone loss through preferential disruption of osteoclastic activation in ovariectomized mice: polyamines inhibit osteoclastogenesis. Br J Pharmacol 166(3):1084–1096. https://doi.org/10.1111/j.1476-5381.2012.01856.x
doi: 10.1111/j.1476-5381.2012.01856.x
pubmed: 22250848
pmcid: 3417431
Zhang M, Wang H, Tracey KJ (2000) Regulation of macrophage activation and inflammation by spermine: a new chapter in an old story. Crit Care Med 28(Supplement):N60–N66. https://doi.org/10.1097/00003246-200004001-00007
doi: 10.1097/00003246-200004001-00007
pubmed: 10807317