Stress-related transcriptomic changes associated with GFP transgene expression and active transgene silencing in plants.
Nicotiana benthamiana
Defense response
Photosynthesis
Systemic post-transcriptional silencing
Transgene
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
10 06 2024
10 06 2024
Historique:
received:
30
03
2023
accepted:
29
05
2024
medline:
11
6
2024
pubmed:
11
6
2024
entrez:
10
6
2024
Statut:
epublish
Résumé
Plants respond to biotic and abiotic stress by activating and interacting with multiple defense pathways, allowing for an efficient global defense response. RNA silencing is a conserved mechanism of regulation of gene expression directed by small RNAs important in acquired plant immunity and especially virus and transgene repression. Several RNA silencing pathways in plants are crucial to control developmental processes and provide protection against abiotic and biotic stresses as well as invasive nucleic acids such as viruses and transposable elements. Various notable studies have shed light on the genes, small RNAs, and mechanisms involved in plant RNA silencing. However, published research on the potential interactions between RNA silencing and other plant stress responses is limited. In the present study, we tested the hypothesis that spreading and maintenance of systemic post-transcriptional gene silencing (PTGS) of a GFP transgene are associated with transcriptional changes that pertain to non-RNA silencing-based stress responses. To this end, we analyzed the structure and function of the photosynthetic apparatus and conducted whole transcriptome analysis in a transgenic line of Nicotiana benthamiana that spontaneously initiates transgene silencing, at different stages of systemic GFP-PTGS. In vivo analysis of chlorophyll a fluorescence yield and expression levels of key photosynthetic genes indicates that photosynthetic activity remains unaffected by systemic GFP-PTGS. However, transcriptomic analysis reveals that spreading and maintenance of GFP-PTGS are associated with transcriptional reprogramming of genes that are involved in abiotic stress responses and pattern- or effector-triggered immunity-based stress responses. These findings suggest that systemic PTGS may affect non-RNA-silencing-based defense pathways in N. benthamiana, providing new insights into the complex interplay between different plant stress responses.
Identifiants
pubmed: 38858413
doi: 10.1038/s41598-024-63527-5
pii: 10.1038/s41598-024-63527-5
doi:
Substances chimiques
Green Fluorescent Proteins
147336-22-9
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13314Subventions
Organisme : Hellenic Foundation for Research and Innovation (HFRI)
ID : Fellowship Number: 6174
Organisme : Hellenic Foundation for Research and Innovation (HFRI)
ID : project RADIO, grant agreement no. 483
Organisme : General Secretariat for Research and Technology, Ministry of Education, Lifelong Learning Fund and Religious Affairs of the Hellenic Republic, under the National Strategic Reference Framework 2017-2013 Operational Program
ID : LS1-1190
Organisme : National recovery and resilience plan Greece 2.0
ID : National Flagship Initiative TAEDR-0535675
Informations de copyright
© 2024. The Author(s).
Références
Baulcombe, D. RNA silencing in plants. Nature 431, 356–363 (2004).
pubmed: 15372043
doi: 10.1038/nature02874
Pyott, D. E. & Molnar, A. Going mobile: Non-cell-autonomous small RNAs shape the genetic landscape of plants. Plant Biotechnol. J. 13, 306–318 (2015).
pubmed: 25756494
doi: 10.1111/pbi.12353
Sarkies, P. & Miska, E. A. Small RNAs break out: The molecular cell biology of mobile small RNAs. Nat. Rev. Mol. Cell Biol. 15, 525–535 (2014).
pubmed: 25053358
doi: 10.1038/nrm3840
Fusaro, A. F. et al. RNA interference-inducing hairpin RNAs in plants act through the viral defence pathway. EMBO Rep. 7, 1168–1175 (2006).
pubmed: 17039251
pmcid: 1679793
doi: 10.1038/sj.embor.7400837
Mermigka, G., Verret, F. & Kalantidis, K. RNA silencing movement in plants. J. Integr. Plant Biol. 58, 328–342 (2016).
pubmed: 26297506
doi: 10.1111/jipb.12423
Katsarou, K. et al. DCL-suppressed Nicotiana benthamiana plants: Valuable tools in research and biotechnology. Mol. Plant Pathol. 20, 432–446 (2019).
pubmed: 30343523
doi: 10.1111/mpp.12761
Nakasugi, K. et al. De Novo Transcriptome sequence assembly and analysis of RNA silencing genes of Nicotiana benthamiana. PLoS One 8, (2013).
Parent, J. S. et al. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes. Nucleic Acids Res. 43, 8464–8475 (2015).
pubmed: 26209135
pmcid: 4787800
doi: 10.1093/nar/gkv753
Katsarou, K., Mavrothalassiti, E., Dermauw, W., Van Leeuwen, T. & Kalantidis, K. Combined activity of DCL2 and DCL3 is crucial in the defense against potato spindle tuber viroid. PLoS Pathog. 12, (2016).
Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene in arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus loss-of-PTGS or enhanced PTGS mutants in these or-ganisms (Cogoni and Macino. 101, 543–553 (2000).
Dunoyer, P., Himber, C., Ruiz-Ferrer, V., Alioua, A. & Voinnet, O. Intra- and intercellular RNA interference in Arabidopsis thaliana requires components of the microRNA and heterochromatic silencing pathways. Nat. Genet. 39, 848–856 (2007).
pubmed: 17558406
doi: 10.1038/ng2081
Mourrain, P. et al. RNAi) in Caenorhabditis elegans (Fire et al., 1998) and other animals (Kennerdell and Carthew). 101, 533–542 (2000).
Qu, F., Ye, X. & Morris, T. J. Sciences of the USA 14732–14737 PNAS. vol. 105 (2008).
Nakazawa, Y., Hiraguri, A., Moriyama, H. & Fukuhara, T. The dsRNA-binding protein DRB4 interacts with the Dicer-like protein DCL4 in vivo and functions in the trans-acting siRNA pathway. Plant Mol. Biol. 63, 777–785 (2007).
pubmed: 17221360
doi: 10.1007/s11103-006-9125-8
Chen, W. et al. A genetic network for systemic RNA silencing in plants. Plant Physiol. 176, 2700–2719 (2018).
pubmed: 29439213
pmcid: 5884585
doi: 10.1104/pp.17.01828
Qin, C. et al. Roles of dicer-like proteins 2 and 4 in intra- and intercellular antiviral silencing. Plant Physiol. 174, 1067–1081 (2017).
pubmed: 28455401
pmcid: 5462052
doi: 10.1104/pp.17.00475
Incarbone, M. & Dunoyer, P. RNA silencing and its suppression: Novel insights from in planta analyses. Trends Plant Sci. 18, 382–392 (2013).
pubmed: 23684690
doi: 10.1016/j.tplants.2013.04.001
Pumplin, N. & Voinnet, O. RNA silencing suppression by plant pathogens: Defence, counter-defence and counter-counter-defence. Nat. Rev. Microbiol. 11, 745–760 (2013).
pubmed: 24129510
doi: 10.1038/nrmicro3120
Liu, L. & Chen, X. RNA quality control as a key to suppressing RNA silencing of endogenous genes in plants. Mol. Plant 9, 826–836 (2016).
pubmed: 27045817
doi: 10.1016/j.molp.2016.03.011
Mäkinen, K., Lõhmus, A. & Pollari, M. Plant RNA regulatory network and RNA granules in virus infection. Front. Plant Sci. 8, (2017).
Gouveia, B. C., Calil, I. P., Machado, J. P. B., Santos, A. A. & Fontes, E. P. B. Immune receptors and co-receptors in antiviral innate immunity in plants. Front. Microbiol. 7, (2017).
Nicaise, V. Lost in translation: An antiviral plant defense mechanism revealed. Cell Host Microbe 17, 417–419 (2015).
pubmed: 25856748
doi: 10.1016/j.chom.2015.03.009
Sanfaçon, H. Plant translation factors and virus resistance. Viruses 7, 3392–3419 (2015).
pubmed: 26114476
pmcid: 4517107
doi: 10.3390/v7072778
Bigeard, J., Colcombet, J. & Hirt, H. Signaling mechanisms in pattern-triggered immunity (PTI). Mol. Plant 8, 521–539 (2015).
pubmed: 25744358
doi: 10.1016/j.molp.2014.12.022
de Ronde, D., Butterbach, P. & Kormelink, R. Dominant resistance against plant viruses. Front. Plant Sci. 5, (2014).
Mandadi, K. K. & Scholthof, K. B. G. Characterization of a viral synergism in the monocot brachypodium distachyon reveals distinctly altered host molecular processes associated with disease. Plant Physiol. 160, 1432–1452 (2012).
pubmed: 22961132
pmcid: 3490591
doi: 10.1104/pp.112.204362
Ramirez-Prado, J. S., Abulfaraj, A. A., Rayapuram, N., Benhamed, M. & Hirt, H. Plant immunity: From signaling to epigenetic control of defense. Trends Plant Sci. 23, 833–844 (2018).
pubmed: 29970339
doi: 10.1016/j.tplants.2018.06.004
Bolton, M. D. Primary metabolism and plant defense-fuel for the fire. MPMI 22, 487–497 (2009).
pubmed: 19348567
doi: 10.1094/MPMI-22-5-0487
Kangasjärvi, S., Neukermans, J., Li, S., Aro, E. M. & Noctor, G. Photosynthesis, photorespiration, and light signalling in defence responses. J. Exp. Bot. 63, 1619–1636 (2012).
pubmed: 22282535
doi: 10.1093/jxb/err402
Serrano, I., Audran, C. & Rivas, S. Chloroplasts at work during plant innate immunity. J. Exp. Bot. 67, 3845–3854 (2016).
pubmed: 26994477
doi: 10.1093/jxb/erw088
Stael, S. et al. Plant innate immunity—Sunny side up?. Trends Plant Sci. 20, 3–11 (2015).
pubmed: 25457110
doi: 10.1016/j.tplants.2014.10.002
Zhao, J., Zhang, X., Hong, Y. & Liu, Y. Chloroplast in plant-virus interaction. Front. Microbiol. 7, (2016).
Nomura, H. et al. Chloroplast-mediated activation of plant immune signalling in Arabidopsis. Nat. Commun. 3, (2012).
Su, J. et al. Active photosynthetic inhibition mediated by MPK3/MPK6 is critical to effector-triggered immunity. PLoS Biol. 16, (2018).
de Zabala, M. T. et al. Chloroplasts play a central role in plant defence and are targeted by pathogen effectors. Nat. Plants 1, (2015).
Carr, J. P., Murphy, A. M., Tungadi, T. & Yoon, J. Y. Plant defense signals: Players and pawns in plant-virus-vector interactions. Plant Sci. 279, 87–95 (2019).
pubmed: 30709497
doi: 10.1016/j.plantsci.2018.04.011
Csorba, T., Kontra, L. & Burgyán, J. Viral silencing suppressors: Tools forged to fine-tune host-pathogen coexistence. Virology 479–480, 85–103 (2015).
pubmed: 25766638
doi: 10.1016/j.virol.2015.02.028
Moon, J. Y. & Park, J. M. Cross-talk in viral defense signaling in plants. Front. Microbiol. 7, (2016).
Nakahara, K. S. & Masuta, C. Interaction between viral RNA silencing suppressors and host factors in plant immunity. Curr. Opin. Plant Biol. 20, 88–95 (2014).
pubmed: 24875766
doi: 10.1016/j.pbi.2014.05.004
Paudel, D. B. & Sanfaçon, H. Exploring the diversity of mechanisms associated with plant tolerance to virus infection. Front. Plant Sci. 871, (2018).
Zvereva, A. S. & Pooggin, M. M. Silencing and innate immunity in plant defense against viral and non-viral pathogens. Viruses 4, 2578–2597 (2012).
pubmed: 23202495
pmcid: 3509663
doi: 10.3390/v4112578
Shivaprasad, P. V. et al. A microRNA superfamily regulates nucleotide binding site-leucine-rich repeats and other mRNAs. Plant Cell 24, 859–874 (2012).
pubmed: 22408077
pmcid: 3336131
doi: 10.1105/tpc.111.095380
Thiébeauld, O. et al. A bacterial GW-effector directly targets Arabidopsis Argonaute 1 to suppress PAMP-triggered immunity and cause disease. BioRxiv Prepr. https://doi.org/10.1101/215590 (2021).
doi: 10.1101/215590
Zhu, S. et al. Double-stranded RNA-binding protein 4 is required for resistance signaling against viral and bacterial pathogens. Cell Rep. 4, 1168–1184 (2013).
pubmed: 24055058
doi: 10.1016/j.celrep.2013.08.018
Bhattacharjee, S. et al. Virus resistance induced by NB-LRR proteins involves Argonaute4-dependent translational control. Plant J. 58, 940–951 (2009).
pubmed: 19220787
doi: 10.1111/j.1365-313X.2009.03832.x
Genoud, T., Buchala, A. J., Chua, N. H. & Métraux, J. P. Phytochrome signalling modulates the SA-perceptive pathway in Arabidopsis. Plant J. 31, 87–95 (2002).
pubmed: 12100485
doi: 10.1046/j.1365-313X.2002.01338.x
Griebel, T. & Zeier, J. Light regulation and daytime dependency of inducible plant defenses in arabidopsis: Phytochrome signaling controls systemic acquired resistance rather than local defense. Plant Physiol. 147, 790–801 (2008).
pubmed: 18434604
pmcid: 2409012
doi: 10.1104/pp.108.119503
Lee, W. S. et al. Salicylic acid treatment and expression of an RNA-dependent RNA polymerase 1 transgene inhibit lethal symptoms and meristem invasion during tobacco mosaic virus infection in Nicotiana benthamiana. BMC Plant Biol. 16, (2016).
Xie, Z., Fan, B., Chen, C. & Chen, Z. An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. https://doi.org/10.1073/pnas.111440998 (2001).
Yu, D., Fan, B., Macfarlane, S. A. & Chen, Z. Analysis of the involvement of an inducible Arabidopsis RNA-dependent RNA polymerase in antiviral defense. 16, 206–216 (2003).
Kalantidis, K., Tsagris, M. & Tabler, M. Spontaneous short-range silencing of a GFP transgene in Nicotiana benthamiana is possibly mediated by small quantities of siRNA that do not trigger systemic silencing. Plant J. 45, 1006–1016 (2006).
pubmed: 16507090
doi: 10.1111/j.1365-313X.2006.02664.x
Kotakis, C. et al. Light intensity affects RNA silencing of a transgene in Nicotiana benthamiana plants. BMC Plant Biol. 10, 220–220 (2010).
pubmed: 20939918
pmcid: 3017829
doi: 10.1186/1471-2229-10-220
Stirbet, A., Lazár, D., Kromdijk, J., & Govindjee. Chlorophyll a fluorescence induction: Can just a one-second measurement be used to quantify abiotic stress responses? Photosynthetica. 56, 86–104 (2018).
Strasser, R. J., Tsimilli-Michael, M. & Srivastava, A. Analysis of the Chlorophyll a Fluorescence Transient. (Springer Netherlands, 2004).
Bhattacharyya, D. et al. A geminivirus betasatellite damages the structural and functional integrity of chloroplasts leading to symptom formation and inhibition of photosynthesis. J. Exp. Bot. 66, 5881–5895 (2015).
pubmed: 26113193
pmcid: 4566980
doi: 10.1093/jxb/erv299
Spoustová, P., Synková, H., Valcke, R. & Čeřovská, N. Chlorophyll a fluorescence as a tool for a study of the Potato virus Y effects on photosynthesis of nontransgenic and transgenic Pssu-ipt tobacco. Photosynthetica 51, 191–201 (2013).
doi: 10.1007/s11099-013-0023-4
Rojas-Murcia, N., Hématy, K., Lee, Y., Emonet, A., Ursache, R., Fujita, S., De Bellis, D., Geldner, N. High-order mutants reveal an essential requirement for peroxidases but not laccases in Casparian strip lignification. Proc. Natl. Acad. Sci. U. S. A. 117(46), 29166–29177 (2020). https://doi.org/10.1073/pnas.2012728117 . Epub 2020 Nov 2.
Sohn, S. H. et al. Cell-autonomous-like silencing of GFP-partitioned transgenic Nicotiana benthamiana. J. Exp. Bot. 65, 4271–4283 (2014).
pubmed: 24868037
doi: 10.1093/jxb/eru200
Alonso-Ramírez, A. et al. Evidence for a role of gibberellins in salicylic acid-modulated early plant responses to abiotic stress in Arabidopsis seeds. Plant Physiol. 150, 1335–1344 (2009).
pubmed: 19439570
pmcid: 2705047
doi: 10.1104/pp.109.139352
Almasia, N. I., Bazzini, A. A., Hopp, H. E. & Vazquez-Rovere, C. Overexpression of snakin-1 gene enhances resistance to Rhizoctonia solani and Erwinia carotovora in transgenic potato plants. Mol. Plant Pathol. 9, 329–338 (2008).
pubmed: 18705874
pmcid: 6640289
doi: 10.1111/j.1364-3703.2008.00469.x
Balaji, V. & Smart, C. D. Over-expression of snakin-2 and extensin-like protein genes restricts pathogen invasiveness and enhances tolerance to Clavibacter michiganensis subsp. michiganensis in transgenic tomato (Solanum lycopersicum). Transgenic Res. 21, 23–37 (2012).
Jones, J. D. G. & Dangl, J. L. The Plant Immune System. (2006).
Van Loon, L. C., Rep, M. & Pieterse, C. M. J. Significance of inducible defense-related proteins in infected plants. Annu. Rev. Phytopathol. 44, 135–162 (2006).
pubmed: 16602946
doi: 10.1146/annurev.phyto.44.070505.143425
Dodds, P. N. & Rathjen, J. P. Plant immunity: Towards an integrated view of plant- pathogen interactions. Nat. Rev. Genet. 11, 539–548 (2010).
pubmed: 20585331
doi: 10.1038/nrg2812
Toruño, T. Y., Shen, M., Coaker, G. & Mackey, D. Regulated disorder: Posttranslational modifications control the RIN4 plant immune signaling hub. Mol. Plant. Microbe Interact. 32, 56–64 (2019).
pubmed: 30418084
doi: 10.1094/MPMI-07-18-0212-FI
Riechmann, J. L. et al. Arabidopsis transcription factors: Genome-wide comparative analysis among eukaryotes. https://www.science.org .
Henriksson, E. et al. Homeodomain leucine zipper class I genes in Arabidopsis. Expression patterns and phylogenetic relationships. Plant Physiol. 139, 509–518 (2005).
pubmed: 16055682
pmcid: 1203399
doi: 10.1104/pp.105.063461
Sharif, R. et al. Hd‐zip gene family: Potential roles in improving plant growth and regulating stress‐responsive mechanisms in plants. Genes 12, (2021).
Hanson, J., Johannesson, H. & Engström, P. Sugar-dependent alterations in cotyledon and leaf development in transgenic plants expressing the HDZhdip gene ATHB13. 45, 247–262 http://rsb.info.nih.gov.nih-image/ (2001).
Ribone, P. A., Capella, M. & Chan, R. L. Functional characterization of the homeodomain leucine zipper i transcription factor AtHB13 reveals a crucial role in Arabidopsis development. J. Exp. Bot. 66, 5929–5943 (2015).
pubmed: 26136262
doi: 10.1093/jxb/erv302
Carvalho, S. D., Chatterjee, M., Coleman, L., Clancy, M. A. & Folta, K. M. Analysis of Block of cell proliferation 1 (BOP1) activity in strawberry and Arabidopsis. Plant Sci. 245, 84–93 (2016).
pubmed: 26940494
doi: 10.1016/j.plantsci.2016.01.002
Winkel-Shirley, B. Biosynthesis of flavonoids and effects of stress. Curr. Opin. Plant Biol. 5, 218–223 (2002).
pubmed: 11960739
doi: 10.1016/S1369-5266(02)00256-X
Cyr, D. M., Langer, T. & Douglas, M. G. DnaJ-like proteins: Molecular chaperones and specific regulators of Hsp70. Trends Biochem. Sci. 176–181 (1994).
Wang, G. et al. Novel dnaj protein facilitates thermotolerance of transgenic tomatoes. Int. J. Mol. Sci. 20, (2019).
Zhou, W. et al. The Arabidopsis J-protein AtDjB1 facilitates thermotolerance by protecting cells against heat-induced oxidative damage. New Phytol. 194, 364–378 (2012).
pubmed: 22356282
doi: 10.1111/j.1469-8137.2012.04070.x
Li, G. L. et al. The roles of the atDjA2 and atDjA3 molecular chaperone proteins in improving thermotolerance of Arabidopsis thaliana seedlings. Plant Sci. 173, 408–416 (2007).
doi: 10.1016/j.plantsci.2007.06.013
Liu, W. et al. A metabolic daylength measurement system mediates winter photoperiodism in plants. Dev. Cell 56, 2501-2515.e5 (2021).
pubmed: 34407427
pmcid: 8440495
doi: 10.1016/j.devcel.2021.07.016
Enstone, D. E., Peterson, C. A. & Ma, F. Root endodermis and exodermis: Structure, function, and responses to the environment. J. Plant Growth Regul. 21, 335–351 (2002).
doi: 10.1007/s00344-003-0002-2
Roppolo, D. et al. A novel protein family mediates Casparian strip formation in the endodermis. Nature 473, 381–384 (2011).
doi: 10.1038/nature10070
Lıska, D., Martinka, M., Kohanova, J. & Lux, A. Asymmetrical development of root endodermis and exodermis in reaction to abiotic stresses. Ann. Bot. 118, 667–674 (2016).
pubmed: 27112163
pmcid: 5055619
doi: 10.1093/aob/mcw047
Chen, T. et al. Casparian strip development and its potential function in salt tolerance. Plant Signal. Behav. 6, 1499–1502 (2011).
pubmed: 21904117
pmcid: 3256377
doi: 10.4161/psb.6.10.17054
Karahara, I., Ikeda, A., Kondo, T. & Uetake, Y. Development of the Casparian strip in primary roots of maize under salt stress. Planta 219, 41–47 (2004).
pubmed: 14986139
doi: 10.1007/s00425-004-1208-7
Yoshida, K., Kaothien, P., Matsui, T., Kawaoka, A. & Shinmyo, A. Molecular biology and application of plant peroxidase genes. Appl. Microbiol. Biotechnol. 60, 665–670 (2003).
pubmed: 12664144
doi: 10.1007/s00253-002-1157-7
Sikorski, R. S., Boguski, M. S., Goebl, M. & Hieter, P. A Repeating amino acid motif in CDC23 defines a family of proteins and a new relationship among genes required for mitosis and RNA synthesis. 60, 307–317 (1990).
Rosado, A. et al. The Arabidopsis tetratricopeptide repeat-containing protein TTL1 is required for osmotic stress responses and abscisic acid sensitivity. Plant Physiol. 142, 1113–1126 (2006).
pubmed: 16998088
pmcid: 1630727
doi: 10.1104/pp.106.085191
Yoshida, H., Nagata, M., Saito, K., Kevin, W. L. C. & Ecker, J. R. Arabidopsis ETO1 specifically interacts with and negatively regulates type 2 1-aminocyclopropane-1-carboxylate synthases. BMC Plant Biol. 5, (2005).
Greenboim-Wainberg, Y. et al. Cross talk between gibberellin and cytokinin: The Arabidopsis GA response inhibitor SPINDLY plays a positive role in cytokinin signaling. Plant Cell 17, 92–102 (2005).
pubmed: 15608330
pmcid: 544492
doi: 10.1105/tpc.104.028472
Xu, J., Wang, X. Y. & Guo, W. Z. The cytochrome P450 superfamily: Key players in plant development and defense. J. Integr. Agric. 14, 1673–1686 (2015).
doi: 10.1016/S2095-3119(14)60980-1
Pandian, B. A., Sathishraj, R., Djanaguiraman, M., Prasad, P. V. V. & Jugulam, M. Role of cytochrome P450 enzymes in plant stress response. Antioxidants 9, (2020).
Zhu, Y. N. et al. Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (Gossypium hirsutum L.). PLoS One 8, (2013).
De Silva, K., Laska, B., Brown, C., Sederoff, H. W. & Khodakovskaya, M. Arabidopsis thaliana calcium-dependent lipid-binding protein (AtCLB): A novel repressor of abiotic stress response. J. Exp. Bot. 62, 2679–2689 (2011).
pubmed: 21252258
doi: 10.1093/jxb/erq468
Bögre, L., Ökrész, L., Henriques, R. & Anthony, R. G. Growth signalling pathways in Arabidopsis and the AGC protein kinases. Trends Plant Sci. 8, 424–431 (2003).
pubmed: 13678909
doi: 10.1016/S1360-1385(03)00188-2
Cui, Y., Lu, X. & Gou, X. Receptor-like protein kinases in plant reproduction: Current understanding and future perspectives. Plant Commun. 3, (2022).
Zhu, J. K. Abiotic stress signaling and responses in plants. Cell 167, 313–324 (2016).
pubmed: 27716505
pmcid: 5104190
doi: 10.1016/j.cell.2016.08.029
Shen, W. & Hanley-Bowdoin, L. Geminivirus infection up-regulates the expression of two arabidopsis protein kinases related to yeast SNF1- and mammalian AMPK-activating kinases. Plant Physiol. 142, 1642–1655 (2006).
pubmed: 17041027
pmcid: 1676070
doi: 10.1104/pp.106.088476
Piroux, N., Saunders, K., Page, A. & Stanley, J. Geminivirus pathogenicity protein C4 interacts with Arabidopsis thaliana shaggy-related protein kinase AtSKη, a component of the brassinosteroid signalling pathway. Virology 362, 428–440 (2007).
pubmed: 17280695
doi: 10.1016/j.virol.2006.12.034
Cornilescu, G. et al. Letter to the Editor: Solution structure of a homodimeric hypothetical protein, At5g22580, a structural genomics target from Arabidopsis thaliana. 29, 387–390 (2004).
Gu, R. et al. Transcript identification and profiling during salt stress and recovery of Populus euphratica. Tree Physiol. 24, 265–276 (2004).
pubmed: 14704136
doi: 10.1093/treephys/24.3.265
Sharma, R., Vishal, P., Kaul, S. & Dhar, M. K. Epiallelic changes in known stress-responsive genes under extreme drought conditions in Brassica juncea (L.) Czern. Plant Cell Rep. 36, 203–217 (2017).
pubmed: 27844102
doi: 10.1007/s00299-016-2072-1
Sirko, A., Wawrzynska, A., Rodriguez, M. C. & Sektas, P. The family of LSU-like proteins. Front. Plant Sci. 5, (2015).
Garcia-Molina, A. et al. LSU network hubs integrate abiotic and biotic stress responses via interaction with the superoxide dismutase FSD2. J. Exp. Bot. 68, 1185–1197 (2017).
pubmed: 28207043
pmcid: 5441861
doi: 10.1093/jxb/erw498
Johnson, C. S., Kolevski, B. & Smyth, D. R. Transparent Testa Glabra2, a trichome and seed coat development gene of arabidopsis, encodes a WRKY transcription factor. Plant Cell 14, 1359–1375 (2002).
pubmed: 12084832
pmcid: 150785
doi: 10.1105/tpc.001404
Han, Y., Zhang, X., Wang, Y. & Ming, F. The suppression of WRKY44 by GIGANTEA-miR172 pathway is involved in drought response of Arabidopsis thaliana. PLoS One 8, (2013).
Peng, Y. et al. The proanthocyanin-related transcription factors MYBC1 and WRKY44 regulate branch points in the kiwifruit anthocyanin pathway. Sci. Rep. 10, (2020).
Rott, M. et al. ATP synthase repression in tobacco restricts photosynthetic electron transport, CO
pubmed: 21278125
pmcid: 3051256
doi: 10.1105/tpc.110.079111
Ioannidis, N. E., Cruz, J. A., Kotzabasis, K. & Kramer, D. M. Evidence that putrescine modulates the higher plant photosynthetic proton circuit. PLoS One 7, (2012).
Avenson, T. J., Cruz, J. A. & Kramer, D. M. Modulation of energy-dependent quenching of excitons in antennae of higher plants. 13, 5530–5535. https://doi.org/10.1073/pnas.0401269101 (2004).
Genty, B., Briantais, J. M. & Baker, N. R. The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim. Biophys. Acta Gen. Subj. 990, 87–92 (1989).
doi: 10.1016/S0304-4165(89)80016-9
Gentleman, R. C. et al. Bioconductor: Open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).
pubmed: 15461798
pmcid: 545600
doi: 10.1186/gb-2004-5-10-r80
Anders, S. & Huber, W. Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).
pubmed: 20979621
pmcid: 3218662
doi: 10.1186/gb-2010-11-10-r106
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Robinson, M. D., McCarthy, D. J. & Smyth, G. K. edgeR: A bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2009).
pubmed: 19910308
pmcid: 2796818
doi: 10.1093/bioinformatics/btp616
Liu, D. et al. Validation of reference genes for gene expression studies in virus-infected Nicotiana benthamiana using quantitative real-time PCR. PLoS One 7, e46451 (2012).
pubmed: 23029521
pmcid: 3460881
doi: 10.1371/journal.pone.0046451