Intersubject correlations in reward and mentalizing brain circuits separately predict persuasiveness of two types of ISIS video propaganda.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
12 Jun 2024
Historique:
received: 19 10 2023
accepted: 15 05 2024
medline: 12 6 2024
pubmed: 12 6 2024
entrez: 11 6 2024
Statut: epublish

Résumé

The Islamist group ISIS has been particularly successful at recruiting Westerners as terrorists. A hypothesized explanation is their simultaneous use of two types of propaganda: Heroic narratives, emphasizing individual glory, alongside Social narratives, which emphasize oppression against Islamic communities. In the current study, functional MRI was used to measure brain responses to short ISIS propaganda videos distributed online. Participants were shown 4 Heroic and 4 Social videos categorized as such by another independent group of subjects. Persuasiveness was measured using post-scan predictions of recruitment effectiveness. Inter-subject correlation (ISC) was used to measure commonality of brain activity time courses across individuals. ISCs in ventral striatum predicted rated persuasiveness for Heroic videos, while ISCs in mentalizing and default networks, especially in dmPFC, predicted rated persuasiveness for Social videos. This work builds on past findings that engagement of the reward circuit and of mentalizing brain regions predicts preferences and persuasion. The observed dissociation as a function of stimulus type is novel, as is the finding that intersubject synchrony in ventral striatum predicts rated persuasiveness. These exploratory results identify possible neural mechanisms by which political extremists successfully recruit prospective members and specifically support the hypothesized distinction between Heroic and Social narratives for ISIS propaganda.

Identifiants

pubmed: 38862592
doi: 10.1038/s41598-024-62341-3
pii: 10.1038/s41598-024-62341-3
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

13455

Subventions

Organisme : U.S. Department of Defense (United States Department of Defense)
ID : FS9550-16-1-0074

Informations de copyright

© 2024. The Author(s).

Références

Pape, R. A., Decety, J., Ruby, K., Rivas, A. A., Jessen, J., Wegner, C. The American Face of ISIS: Analysis of ISIS-Related Terrorism in the US March 2014-August 2016." Australian Strategic Policy Institute. https://www.aspi.org.au/report/american-face-isis-analysis-isis-related-terrorism-us-march-2014-august-2016 , (2017).
Dodwell, B., Milton, D., Rassler, D. Then and now: Comparing the flow of foreign fighters to AQI and the Islamic State.” West Point, NY: Combatting Terrorism Center. https://ctc.westpoint.edu/wp-content/uploads/2016/12/Then-and-Now.pdf , (2016).
Pape, R. A., Rovang, D., Ruby, K. G., and Decety, J. 2018 Mobilizing to Martyrdom: A Narrative Theory of High-Risk Mobilization. APSA Preprints. https://doi.org/10.3377/apsa-2023-x660r .
Pape, R. A., Decety, J., Ruby, K. G., Yoder, K., Rovang, D., Identity and narrative persuasion: How ISIS Western-directed propaganda works. APSA Preprints. Available at https://doi.org/10.33774/apsa-2023-68cbq . (2023).
Yoder, K., Ruby, K., Pape, R. & Decety, J. EEG distinguishes heroic narratives in ISIS online video propaganda. Sci. Rep. 10, 19593 (2020).
pubmed: 33177596 pmcid: 7659011 doi: 10.1038/s41598-020-76711-0
Frischlich, L., Rieger, D., Morten, A. & Bente, G. The power of a good story: Narrative persuasion in extremist propaganda and videos against violent extremism. Int. J. Conf.Viol. (IJCV) 12, a644 (2018).
Baumert, A., Rothmund, T., Thomas, N., Gollwitzer, M. & Schmitt, M. Justice as a moral motive: Belief in a just world and justice sensitivity as potential indicators of the justice motive. In Handbook of moral motivation (eds Heinrichs, K. et al.) 159–179 (Brill, 2013).
doi: 10.1007/978-94-6209-275-4_10
Yoder, K. J. & Decety, J. The good, the bad, and the just: Justice sensitivity predicts neural response during moral evaluation of actions performed by others. J. Neurosci. 34, 4161–4166 (2014).
pubmed: 24647937 pmcid: 3960462 doi: 10.1523/JNEUROSCI.4648-13.2014
Yoder, K. J. & Decety, J. Spatiotemporal neural dynamics of moral judgment: a high-density ERP study. Neuropsychologia 60, 39–45 (2014).
pubmed: 24905282 doi: 10.1016/j.neuropsychologia.2014.05.022
Decety, J. & Yoder, K. J. The emerging social neuroscience of justice motivation. Trends Cogn. Sci. 21, 6–14 (2017).
pubmed: 27865787 doi: 10.1016/j.tics.2016.10.008
Decety, J. & Yoder, K. J. Empathy and motivation for justice: Cognitive empathy and concern, but not emotional empathy, predict sensitivity to injustice for others. Soc. Neurosci. 11, 1–14 (2016).
pubmed: 25768232 doi: 10.1080/17470919.2015.1029593
Rothmund, T., Bromme, L. & Azevedo, F. Justice for the people? How Justice Sensitivity can foster and impair support for populist radical-right parties and politicians in the United States and in Germany. Polit. Psychol. 41, 479–497 (2020).
doi: 10.1111/pops.12632
Cloutier, J., Heatherton, T. F., Whalen, P. J. & Kelley, W. M. Are attractive people rewarding? Sex differences in the neural substrates of facial attractiveness. J. Cogn. Neurosci. 20, 941–951 (2008).
pubmed: 18211242 doi: 10.1162/jocn.2008.20062
Levy, I., Lazzaro, S. C., Rutledge, R. B. & Glimcher, P. W. Choice from non-choice: Predicting consumer preferences from Blood Oxygenation Level-Dependent signals obtained during passive viewing. J. Neurosci. 31, 118–125 (2011).
pubmed: 21209196 pmcid: 3078717 doi: 10.1523/JNEUROSCI.3214-10.2011
Tusche, A., Kahnt, T., Wisniewski, D. & Haynes, J.-D. Automatic processing of political preferences in the human brain. NeuroImage 72, 174–182 (2013).
pubmed: 23353599 doi: 10.1016/j.neuroimage.2013.01.020
Scholz, C. et al. A neural model of valuation and information virality. Proc. Natl. Acad. Sci. 114, 2881–2886 (2017).
pubmed: 28242678 pmcid: 5358393 doi: 10.1073/pnas.1615259114
Genevsky, A., Yoon, C. & Knutson, B. When brain beats behavior: Neuroforecasting crowdfunding outcomes. J. Neurosci. 37, 8625–8634 (2017).
pubmed: 28821681 pmcid: 5588458 doi: 10.1523/JNEUROSCI.1633-16.2017
Tong, L. C., Acikalin, M. Y., Genevsky, A., Shiv, B. & Knutson, B. Brain activity forecasts video engagement in an internet attention market. Proc.Natl. Acad. Sci. 117, 6936–6941 (2020).
pubmed: 32152105 pmcid: 7104008 doi: 10.1073/pnas.1905178117
Campbell-Meiklejohn, D. K., Bach, D. R., Roepstorff, A., Dolan, R. J. & Frith, C. D. How the opinion of others affects our valuation of objects. Curr. Biol. 20, 1165–1170 (2010).
pubmed: 20619815 pmcid: 2908235 doi: 10.1016/j.cub.2010.04.055
Zaki, J., Schirmer, J. & Mitchell, J. P. Social influence modulates the neural computation of value. Psychol. Sci. 22, 894–900 (2011).
pubmed: 21653908 doi: 10.1177/0956797611411057
Arioli, M., Cattaneo, Z., Ricciardi, E. & Canessa, N. Overlapping and specific neural correlates for empathizing, affective mentalizing, and cognitive mentalizing: A coordinate-based meta-analytic study. Hum. Brain Mapp. 42, 4777–4804 (2021).
pubmed: 34322943 pmcid: 8410528 doi: 10.1002/hbm.25570
Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76, 412–427 (2013).
pubmed: 23507394 doi: 10.1016/j.neuroimage.2013.02.063
Cacioppo, J. T., Cacioppo, S. & Petty, R. E. The neuroscience of persuasion: A review with an emphasis on issues and opportunities. Soc. Neurosci. 13, 129–172 (2018).
pubmed: 28005461 doi: 10.1080/17470919.2016.1273851
Falk, E. B. et al. The neural correlates of persuasion: A common network across cultures and media. J. Cogn. Neurosci. 22, 2447–2459 (2010).
pubmed: 19925175 pmcid: 3025286 doi: 10.1162/jocn.2009.21363
Chua, H. F. et al. Self-related neural response to tailored smoking-cessation messages predicts quitting. Nat. Neurosci. 14, 426–427 (2011).
pubmed: 21358641 pmcid: 3109081 doi: 10.1038/nn.2761
Wang, A. L. et al. Content matters: Neuroimaging investigation of brain and behavioral impact of televised anti-tobacco public service announcements. J. Neurosci. 33, 7420–7427 (2013).
pubmed: 23616548 pmcid: 3773220 doi: 10.1523/JNEUROSCI.3840-12.2013
Falk, E. B. et al. Functional brain imaging predicts public health campaign success. Soc. Cogn. Affect. Neurosci. 11, 204–214 (2016).
pubmed: 26400858 doi: 10.1093/scan/nsv108
Welborn, B. L. et al. Neural mechanisms of social influence in adolescence. Soc. Cogn. Affect. Neurosci. 11, 100–109 (2015).
pubmed: 26203050 pmcid: 4692320 doi: 10.1093/scan/nsv095
Baek, E. C. et al. Activity in the brain’s valuation and mentalizing networks is associated with propagation of online recommendation. Sci. Rep. 11, 11196 (2021).
pubmed: 34045543 pmcid: 8160140 doi: 10.1038/s41598-021-90420-2
Hasson, U., Malach, R. & Heeger, D. Reliability of cortical activity during natural stimulation. Trends Cogn. Sci. 14, 40–48 (2010).
pubmed: 20004608 doi: 10.1016/j.tics.2009.10.011
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject synchronization of cortical activity during natural vision. Science 303, 1634–1640 (2004).
pubmed: 15016991 doi: 10.1126/science.1089506
SA Nastase V Gazzola U Hasson C Keysers, Social Cognitive and Affect. Neurosci. 14 667 685 (2019).
Dmochowski, J. P. et al. Audience preferences are predicted by temporal reliability of neural processing. Nat. Commun. 5, 4567 (2014).
pubmed: 25072833 doi: 10.1038/ncomms5567
Barnett, S. B. & Cerf, M. A ticket for your thoughts: Method for predicting content recall and sales using neural similarity of moviegoers. J. Consum. Res. 44, 160–181 (2017).
doi: 10.1093/jcr/ucw083
Chan, H.-Y., Smidts, A., Schoots, V. C., Dietvorst, R. C. & Boksem, M. A. S. Neural similarity at temporal lobe and cerebellum predicts out-of-sample preference and recall for video stimuli. NeuroImage 197, 391–401 (2019).
pubmed: 31051296 doi: 10.1016/j.neuroimage.2019.04.076
Imhof, M. A., Schmälzle, R., Renner, B. & Schupp, H. T. How real-life health messages engage our brains: Shared processing of effective anti-alcohol videos. Soc. Cogn. Affect. Neurosci. 12, 1188–1196 (2017).
pubmed: 28402568 pmcid: 5490672 doi: 10.1093/scan/nsx044
Schmälzle, R., Hacker, F. E. K., Honey, C. & Hasson, U. Engaged listeners: Shared neural processing of powerful political speeches. Soc. Cogn. Affect. Neurosci. 10, 1137–1143 (2015).
pubmed: 25653012 pmcid: 4526488 doi: 10.1093/scan/nsu168
Grall, C., Weber, R., Tamborini, R. & Schmälzle, R. Stories collectively engage listeners’ brains: Enhanced intersubject correlations during reception of personal narratives. J. Commun. 71, 332–355 (2021).
doi: 10.1093/joc/jqab004
Baumert, A. et al. Measuring four perspectives of justice sensitivity with two items each. J. Personal.Assess. 96, 380–390 (2014).
doi: 10.1080/00223891.2013.836526
Koenig, H. G., Meador, K. G. & Parkerson, G. Religion index for psychiatric research. Am. J. Psychiatry 154, 885–886 (1997).
pubmed: 9167530 doi: 10.1176/ajp.154.6.885b
Murty, V. P. et al. Resting state networks distinguish human ventral tegmental area from substantia nigra. Neuroimage 100, 580–589 (2014).
pubmed: 24979343 doi: 10.1016/j.neuroimage.2014.06.047
Fehlbaum, L. V., Borbás, R., Paul, K., Eickhoff, S. B. & Raschle, N. Early and late neural correlates of mentalizing: ALE meta-analyses in adults, children and adolescents. Soc. Cogn. Affect. Neurosci. 17, 351–366 (2022).
pubmed: 34545389 doi: 10.1093/scan/nsab105
Spunt, R. P. & Adolphs, R. Validating the Why/How contrast for functional MRI studies of theory of mind. NeuroImage 99, 301–311 (2014).
pubmed: 24844746 doi: 10.1016/j.neuroimage.2014.05.023
Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex 28, 3095–3114 (2018).
pubmed: 28981612 doi: 10.1093/cercor/bhx179
Nummenmaa, L., Glerean, E., Viinikainen, M., Jääskeläinen, I. P. & Sams, M. Emotions promote social interaction by synchronizing brain activity across individuals. Proc. Natl. Acad. Sci. 109, 9599–9604 (2012).
pubmed: 22623534 pmcid: 3386135 doi: 10.1073/pnas.1206095109
Pape, R. A. Dying to win: The strategic logic of suicide terrorism (Random House, 2005).
Scholz, C., Baek, E. & Falk, E. B. Invoking self-related and social thoughts impacts online information sharing. Soc. Cogn. Affect. Neurosci. https://doi.org/10.1093/scan/nsad013 (2023).
doi: 10.1093/scan/nsad013 pubmed: 37130081 pmcid: 10243902
Samanez-Larkin, G. & Knutson, B. Decision making in the ageing brain: Changes in affective and motivational circuits. Nat. Rev. Neurosci. 16, 278–289 (2015).
pubmed: 25873038 pmcid: 5645075 doi: 10.1038/nrn3917
Esteban, O. et al. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE 12, e0184661 (2017).
pubmed: 28945803 pmcid: 5612458 doi: 10.1371/journal.pone.0184661
Yoder, K. J. & Decety, J. Moral conviction and metacognitive ability shape multiple stages of information processing during social decision-making. Cortex 151, 162–175 (2022).
pubmed: 35429765 doi: 10.1016/j.cortex.2022.03.008
Esteban, O. et al. Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nat. Protocol. 15, 2186–2202 (2020).
doi: 10.1038/s41596-020-0327-3
Tustison, N. J. et al. N4ITK: Improved N3 Bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).
pubmed: 20378467 pmcid: 3071855 doi: 10.1109/TMI.2010.2046908
Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).
pubmed: 17659998 doi: 10.1016/j.media.2007.06.004
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm”. IEEE Transactions on Medical Imaging 20, 45–57 (2001).
pubmed: 11293691 doi: 10.1109/42.906424
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).
pubmed: 9931268 doi: 10.1006/nimg.1998.0395
Klein, A. et al. Mindboggling morphometry of human brains. PLOS Comput. Biol. 13, e1005350 (2017).
pubmed: 28231282 pmcid: 5322885 doi: 10.1371/journal.pcbi.1005350
Evans, A. C., Janke, A. L., Collins, D. L. & Baillet, S. Brain templates and atlases. NeuroImage 62, 911–922 (2012).
pubmed: 22248580 doi: 10.1016/j.neuroimage.2012.01.024
Andersson, J. L. R., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. NeuroImage 20, 870–888 (2003).
pubmed: 14568458 doi: 10.1016/S1053-8119(03)00336-7
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).
pubmed: 12377157 doi: 10.1006/nimg.2002.1132
Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR Biomed. 10, 171–178 (1997).
pubmed: 9430344 doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 (2009).
pubmed: 19573611 doi: 10.1016/j.neuroimage.2009.06.060
Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI”. NeuroImage 37, 90–101 (2007).
pubmed: 17560126 doi: 10.1016/j.neuroimage.2007.04.042
Muschelli, J. et al. Reduction of motion-related artifacts in resting state fMRI using aCompCor. NeuroImage 96, 22–35 (2014).
pubmed: 24657780 doi: 10.1016/j.neuroimage.2014.03.028
Lanczos, C. Evaluation of noisy data. J. Soc. Indus. Appl. Math. Series B Num. Anal. 1, 76–85 (1964).
doi: 10.1137/0701007
Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64, 240–256 (2013).
pubmed: 22926292 doi: 10.1016/j.neuroimage.2012.08.052

Auteurs

Michael S Cohen (MS)

Department of Psychology, University of Chicago, 5848 S. University Ave, Chicago, IL, 60637, USA. mscohen@uchicago.edu.

Yuan Chang Leong (YC)

Department of Psychology, University of Chicago, 5848 S. University Ave, Chicago, IL, 60637, USA.

Keven Ruby (K)

Department of Political Science, University of Chicago, Chicago, IL, USA.
Chicago Project on Security and Threats, University of Chicago, Chicago, IL, USA.

Robert A Pape (RA)

Department of Political Science, University of Chicago, Chicago, IL, USA.
Chicago Project on Security and Threats, University of Chicago, Chicago, IL, USA.

Jean Decety (J)

Department of Psychology, University of Chicago, 5848 S. University Ave, Chicago, IL, 60637, USA. decety@uchicago.edu.
Department of Psychiatry and Behavioral Neuroscience, University of Chicago, Chicago, IL, USA. decety@uchicago.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH