Intersubject correlations in reward and mentalizing brain circuits separately predict persuasiveness of two types of ISIS video propaganda.
Journal
Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288
Informations de publication
Date de publication:
12 Jun 2024
12 Jun 2024
Historique:
received:
19
10
2023
accepted:
15
05
2024
medline:
12
6
2024
pubmed:
12
6
2024
entrez:
11
6
2024
Statut:
epublish
Résumé
The Islamist group ISIS has been particularly successful at recruiting Westerners as terrorists. A hypothesized explanation is their simultaneous use of two types of propaganda: Heroic narratives, emphasizing individual glory, alongside Social narratives, which emphasize oppression against Islamic communities. In the current study, functional MRI was used to measure brain responses to short ISIS propaganda videos distributed online. Participants were shown 4 Heroic and 4 Social videos categorized as such by another independent group of subjects. Persuasiveness was measured using post-scan predictions of recruitment effectiveness. Inter-subject correlation (ISC) was used to measure commonality of brain activity time courses across individuals. ISCs in ventral striatum predicted rated persuasiveness for Heroic videos, while ISCs in mentalizing and default networks, especially in dmPFC, predicted rated persuasiveness for Social videos. This work builds on past findings that engagement of the reward circuit and of mentalizing brain regions predicts preferences and persuasion. The observed dissociation as a function of stimulus type is novel, as is the finding that intersubject synchrony in ventral striatum predicts rated persuasiveness. These exploratory results identify possible neural mechanisms by which political extremists successfully recruit prospective members and specifically support the hypothesized distinction between Heroic and Social narratives for ISIS propaganda.
Identifiants
pubmed: 38862592
doi: 10.1038/s41598-024-62341-3
pii: 10.1038/s41598-024-62341-3
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
13455Subventions
Organisme : U.S. Department of Defense (United States Department of Defense)
ID : FS9550-16-1-0074
Informations de copyright
© 2024. The Author(s).
Références
Pape, R. A., Decety, J., Ruby, K., Rivas, A. A., Jessen, J., Wegner, C. The American Face of ISIS: Analysis of ISIS-Related Terrorism in the US March 2014-August 2016." Australian Strategic Policy Institute. https://www.aspi.org.au/report/american-face-isis-analysis-isis-related-terrorism-us-march-2014-august-2016 , (2017).
Dodwell, B., Milton, D., Rassler, D. Then and now: Comparing the flow of foreign fighters to AQI and the Islamic State.” West Point, NY: Combatting Terrorism Center. https://ctc.westpoint.edu/wp-content/uploads/2016/12/Then-and-Now.pdf , (2016).
Pape, R. A., Rovang, D., Ruby, K. G., and Decety, J. 2018 Mobilizing to Martyrdom: A Narrative Theory of High-Risk Mobilization. APSA Preprints. https://doi.org/10.3377/apsa-2023-x660r .
Pape, R. A., Decety, J., Ruby, K. G., Yoder, K., Rovang, D., Identity and narrative persuasion: How ISIS Western-directed propaganda works. APSA Preprints. Available at https://doi.org/10.33774/apsa-2023-68cbq . (2023).
Yoder, K., Ruby, K., Pape, R. & Decety, J. EEG distinguishes heroic narratives in ISIS online video propaganda. Sci. Rep. 10, 19593 (2020).
pubmed: 33177596
pmcid: 7659011
doi: 10.1038/s41598-020-76711-0
Frischlich, L., Rieger, D., Morten, A. & Bente, G. The power of a good story: Narrative persuasion in extremist propaganda and videos against violent extremism. Int. J. Conf.Viol. (IJCV) 12, a644 (2018).
Baumert, A., Rothmund, T., Thomas, N., Gollwitzer, M. & Schmitt, M. Justice as a moral motive: Belief in a just world and justice sensitivity as potential indicators of the justice motive. In Handbook of moral motivation (eds Heinrichs, K. et al.) 159–179 (Brill, 2013).
doi: 10.1007/978-94-6209-275-4_10
Yoder, K. J. & Decety, J. The good, the bad, and the just: Justice sensitivity predicts neural response during moral evaluation of actions performed by others. J. Neurosci. 34, 4161–4166 (2014).
pubmed: 24647937
pmcid: 3960462
doi: 10.1523/JNEUROSCI.4648-13.2014
Yoder, K. J. & Decety, J. Spatiotemporal neural dynamics of moral judgment: a high-density ERP study. Neuropsychologia 60, 39–45 (2014).
pubmed: 24905282
doi: 10.1016/j.neuropsychologia.2014.05.022
Decety, J. & Yoder, K. J. The emerging social neuroscience of justice motivation. Trends Cogn. Sci. 21, 6–14 (2017).
pubmed: 27865787
doi: 10.1016/j.tics.2016.10.008
Decety, J. & Yoder, K. J. Empathy and motivation for justice: Cognitive empathy and concern, but not emotional empathy, predict sensitivity to injustice for others. Soc. Neurosci. 11, 1–14 (2016).
pubmed: 25768232
doi: 10.1080/17470919.2015.1029593
Rothmund, T., Bromme, L. & Azevedo, F. Justice for the people? How Justice Sensitivity can foster and impair support for populist radical-right parties and politicians in the United States and in Germany. Polit. Psychol. 41, 479–497 (2020).
doi: 10.1111/pops.12632
Cloutier, J., Heatherton, T. F., Whalen, P. J. & Kelley, W. M. Are attractive people rewarding? Sex differences in the neural substrates of facial attractiveness. J. Cogn. Neurosci. 20, 941–951 (2008).
pubmed: 18211242
doi: 10.1162/jocn.2008.20062
Levy, I., Lazzaro, S. C., Rutledge, R. B. & Glimcher, P. W. Choice from non-choice: Predicting consumer preferences from Blood Oxygenation Level-Dependent signals obtained during passive viewing. J. Neurosci. 31, 118–125 (2011).
pubmed: 21209196
pmcid: 3078717
doi: 10.1523/JNEUROSCI.3214-10.2011
Tusche, A., Kahnt, T., Wisniewski, D. & Haynes, J.-D. Automatic processing of political preferences in the human brain. NeuroImage 72, 174–182 (2013).
pubmed: 23353599
doi: 10.1016/j.neuroimage.2013.01.020
Scholz, C. et al. A neural model of valuation and information virality. Proc. Natl. Acad. Sci. 114, 2881–2886 (2017).
pubmed: 28242678
pmcid: 5358393
doi: 10.1073/pnas.1615259114
Genevsky, A., Yoon, C. & Knutson, B. When brain beats behavior: Neuroforecasting crowdfunding outcomes. J. Neurosci. 37, 8625–8634 (2017).
pubmed: 28821681
pmcid: 5588458
doi: 10.1523/JNEUROSCI.1633-16.2017
Tong, L. C., Acikalin, M. Y., Genevsky, A., Shiv, B. & Knutson, B. Brain activity forecasts video engagement in an internet attention market. Proc.Natl. Acad. Sci. 117, 6936–6941 (2020).
pubmed: 32152105
pmcid: 7104008
doi: 10.1073/pnas.1905178117
Campbell-Meiklejohn, D. K., Bach, D. R., Roepstorff, A., Dolan, R. J. & Frith, C. D. How the opinion of others affects our valuation of objects. Curr. Biol. 20, 1165–1170 (2010).
pubmed: 20619815
pmcid: 2908235
doi: 10.1016/j.cub.2010.04.055
Zaki, J., Schirmer, J. & Mitchell, J. P. Social influence modulates the neural computation of value. Psychol. Sci. 22, 894–900 (2011).
pubmed: 21653908
doi: 10.1177/0956797611411057
Arioli, M., Cattaneo, Z., Ricciardi, E. & Canessa, N. Overlapping and specific neural correlates for empathizing, affective mentalizing, and cognitive mentalizing: A coordinate-based meta-analytic study. Hum. Brain Mapp. 42, 4777–4804 (2021).
pubmed: 34322943
pmcid: 8410528
doi: 10.1002/hbm.25570
Bartra, O., McGuire, J. T. & Kable, J. W. The valuation system: A coordinate-based meta-analysis of BOLD fMRI experiments examining neural correlates of subjective value. NeuroImage 76, 412–427 (2013).
pubmed: 23507394
doi: 10.1016/j.neuroimage.2013.02.063
Cacioppo, J. T., Cacioppo, S. & Petty, R. E. The neuroscience of persuasion: A review with an emphasis on issues and opportunities. Soc. Neurosci. 13, 129–172 (2018).
pubmed: 28005461
doi: 10.1080/17470919.2016.1273851
Falk, E. B. et al. The neural correlates of persuasion: A common network across cultures and media. J. Cogn. Neurosci. 22, 2447–2459 (2010).
pubmed: 19925175
pmcid: 3025286
doi: 10.1162/jocn.2009.21363
Chua, H. F. et al. Self-related neural response to tailored smoking-cessation messages predicts quitting. Nat. Neurosci. 14, 426–427 (2011).
pubmed: 21358641
pmcid: 3109081
doi: 10.1038/nn.2761
Wang, A. L. et al. Content matters: Neuroimaging investigation of brain and behavioral impact of televised anti-tobacco public service announcements. J. Neurosci. 33, 7420–7427 (2013).
pubmed: 23616548
pmcid: 3773220
doi: 10.1523/JNEUROSCI.3840-12.2013
Falk, E. B. et al. Functional brain imaging predicts public health campaign success. Soc. Cogn. Affect. Neurosci. 11, 204–214 (2016).
pubmed: 26400858
doi: 10.1093/scan/nsv108
Welborn, B. L. et al. Neural mechanisms of social influence in adolescence. Soc. Cogn. Affect. Neurosci. 11, 100–109 (2015).
pubmed: 26203050
pmcid: 4692320
doi: 10.1093/scan/nsv095
Baek, E. C. et al. Activity in the brain’s valuation and mentalizing networks is associated with propagation of online recommendation. Sci. Rep. 11, 11196 (2021).
pubmed: 34045543
pmcid: 8160140
doi: 10.1038/s41598-021-90420-2
Hasson, U., Malach, R. & Heeger, D. Reliability of cortical activity during natural stimulation. Trends Cogn. Sci. 14, 40–48 (2010).
pubmed: 20004608
doi: 10.1016/j.tics.2009.10.011
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G. & Malach, R. Intersubject synchronization of cortical activity during natural vision. Science 303, 1634–1640 (2004).
pubmed: 15016991
doi: 10.1126/science.1089506
SA Nastase V Gazzola U Hasson C Keysers, Social Cognitive and Affect. Neurosci. 14 667 685 (2019).
Dmochowski, J. P. et al. Audience preferences are predicted by temporal reliability of neural processing. Nat. Commun. 5, 4567 (2014).
pubmed: 25072833
doi: 10.1038/ncomms5567
Barnett, S. B. & Cerf, M. A ticket for your thoughts: Method for predicting content recall and sales using neural similarity of moviegoers. J. Consum. Res. 44, 160–181 (2017).
doi: 10.1093/jcr/ucw083
Chan, H.-Y., Smidts, A., Schoots, V. C., Dietvorst, R. C. & Boksem, M. A. S. Neural similarity at temporal lobe and cerebellum predicts out-of-sample preference and recall for video stimuli. NeuroImage 197, 391–401 (2019).
pubmed: 31051296
doi: 10.1016/j.neuroimage.2019.04.076
Imhof, M. A., Schmälzle, R., Renner, B. & Schupp, H. T. How real-life health messages engage our brains: Shared processing of effective anti-alcohol videos. Soc. Cogn. Affect. Neurosci. 12, 1188–1196 (2017).
pubmed: 28402568
pmcid: 5490672
doi: 10.1093/scan/nsx044
Schmälzle, R., Hacker, F. E. K., Honey, C. & Hasson, U. Engaged listeners: Shared neural processing of powerful political speeches. Soc. Cogn. Affect. Neurosci. 10, 1137–1143 (2015).
pubmed: 25653012
pmcid: 4526488
doi: 10.1093/scan/nsu168
Grall, C., Weber, R., Tamborini, R. & Schmälzle, R. Stories collectively engage listeners’ brains: Enhanced intersubject correlations during reception of personal narratives. J. Commun. 71, 332–355 (2021).
doi: 10.1093/joc/jqab004
Baumert, A. et al. Measuring four perspectives of justice sensitivity with two items each. J. Personal.Assess. 96, 380–390 (2014).
doi: 10.1080/00223891.2013.836526
Koenig, H. G., Meador, K. G. & Parkerson, G. Religion index for psychiatric research. Am. J. Psychiatry 154, 885–886 (1997).
pubmed: 9167530
doi: 10.1176/ajp.154.6.885b
Murty, V. P. et al. Resting state networks distinguish human ventral tegmental area from substantia nigra. Neuroimage 100, 580–589 (2014).
pubmed: 24979343
doi: 10.1016/j.neuroimage.2014.06.047
Fehlbaum, L. V., Borbás, R., Paul, K., Eickhoff, S. B. & Raschle, N. Early and late neural correlates of mentalizing: ALE meta-analyses in adults, children and adolescents. Soc. Cogn. Affect. Neurosci. 17, 351–366 (2022).
pubmed: 34545389
doi: 10.1093/scan/nsab105
Spunt, R. P. & Adolphs, R. Validating the Why/How contrast for functional MRI studies of theory of mind. NeuroImage 99, 301–311 (2014).
pubmed: 24844746
doi: 10.1016/j.neuroimage.2014.05.023
Schaefer, A. et al. Local-global parcellation of the human cerebral cortex from intrinsic functional connectivity MRI. Cerebral Cortex 28, 3095–3114 (2018).
pubmed: 28981612
doi: 10.1093/cercor/bhx179
Nummenmaa, L., Glerean, E., Viinikainen, M., Jääskeläinen, I. P. & Sams, M. Emotions promote social interaction by synchronizing brain activity across individuals. Proc. Natl. Acad. Sci. 109, 9599–9604 (2012).
pubmed: 22623534
pmcid: 3386135
doi: 10.1073/pnas.1206095109
Pape, R. A. Dying to win: The strategic logic of suicide terrorism (Random House, 2005).
Scholz, C., Baek, E. & Falk, E. B. Invoking self-related and social thoughts impacts online information sharing. Soc. Cogn. Affect. Neurosci. https://doi.org/10.1093/scan/nsad013 (2023).
doi: 10.1093/scan/nsad013
pubmed: 37130081
pmcid: 10243902
Samanez-Larkin, G. & Knutson, B. Decision making in the ageing brain: Changes in affective and motivational circuits. Nat. Rev. Neurosci. 16, 278–289 (2015).
pubmed: 25873038
pmcid: 5645075
doi: 10.1038/nrn3917
Esteban, O. et al. MRIQC: Advancing the automatic prediction of image quality in MRI from unseen sites. PLoS ONE 12, e0184661 (2017).
pubmed: 28945803
pmcid: 5612458
doi: 10.1371/journal.pone.0184661
Yoder, K. J. & Decety, J. Moral conviction and metacognitive ability shape multiple stages of information processing during social decision-making. Cortex 151, 162–175 (2022).
pubmed: 35429765
doi: 10.1016/j.cortex.2022.03.008
Esteban, O. et al. Analysis of task-based functional MRI data preprocessed with fMRIPrep. Nat. Protocol. 15, 2186–2202 (2020).
doi: 10.1038/s41596-020-0327-3
Tustison, N. J. et al. N4ITK: Improved N3 Bias correction. IEEE Trans. Med. Imaging 29, 1310–1320 (2010).
pubmed: 20378467
pmcid: 3071855
doi: 10.1109/TMI.2010.2046908
Avants, B. B., Epstein, C. L., Grossman, M. & Gee, J. C. Symmetric diffeomorphic image registration with cross-correlation: Evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41 (2008).
pubmed: 17659998
doi: 10.1016/j.media.2007.06.004
Zhang, Y., Brady, M. & Smith, S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm”. IEEE Transactions on Medical Imaging 20, 45–57 (2001).
pubmed: 11293691
doi: 10.1109/42.906424
Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis: I segmentation and surface reconstruction. NeuroImage 9, 179–194 (1999).
pubmed: 9931268
doi: 10.1006/nimg.1998.0395
Klein, A. et al. Mindboggling morphometry of human brains. PLOS Comput. Biol. 13, e1005350 (2017).
pubmed: 28231282
pmcid: 5322885
doi: 10.1371/journal.pcbi.1005350
Evans, A. C., Janke, A. L., Collins, D. L. & Baillet, S. Brain templates and atlases. NeuroImage 62, 911–922 (2012).
pubmed: 22248580
doi: 10.1016/j.neuroimage.2012.01.024
Andersson, J. L. R., Skare, S. & Ashburner, J. How to correct susceptibility distortions in spin-echo echo-planar images: Application to diffusion tensor imaging. NeuroImage 20, 870–888 (2003).
pubmed: 14568458
doi: 10.1016/S1053-8119(03)00336-7
Jenkinson, M., Bannister, P., Brady, M. & Smith, S. Improved optimization for the robust and accurate linear registration and motion correction of brain images. NeuroImage 17, 825–841 (2002).
pubmed: 12377157
doi: 10.1006/nimg.2002.1132
Cox, R. W. & Hyde, J. S. Software tools for analysis and visualization of fMRI data. NMR Biomed. 10, 171–178 (1997).
pubmed: 9430344
doi: 10.1002/(SICI)1099-1492(199706/08)10:4/5<171::AID-NBM453>3.0.CO;2-L
Greve, D. N. & Fischl, B. Accurate and robust brain image alignment using boundary-based registration. NeuroImage 48, 63–72 (2009).
pubmed: 19573611
doi: 10.1016/j.neuroimage.2009.06.060
Behzadi, Y., Restom, K., Liau, J. & Liu, T. T. A component based noise correction method (CompCor) for BOLD and perfusion based fMRI”. NeuroImage 37, 90–101 (2007).
pubmed: 17560126
doi: 10.1016/j.neuroimage.2007.04.042
Muschelli, J. et al. Reduction of motion-related artifacts in resting state fMRI using aCompCor. NeuroImage 96, 22–35 (2014).
pubmed: 24657780
doi: 10.1016/j.neuroimage.2014.03.028
Lanczos, C. Evaluation of noisy data. J. Soc. Indus. Appl. Math. Series B Num. Anal. 1, 76–85 (1964).
doi: 10.1137/0701007
Satterthwaite, T. D. et al. An improved framework for confound regression and filtering for control of motion artifact in the preprocessing of resting-state functional connectivity data. NeuroImage 64, 240–256 (2013).
pubmed: 22926292
doi: 10.1016/j.neuroimage.2012.08.052