Identification of genetic variants controlling diosgenin content in Dioscorea zingiberensis tuber by genome-wide association study.


Journal

BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807

Informations de publication

Date de publication:
13 Jun 2024
Historique:
received: 27 11 2023
accepted: 10 05 2024
medline: 14 6 2024
pubmed: 14 6 2024
entrez: 13 6 2024
Statut: epublish

Résumé

Diosgenin is an important steroidal precursor renowned for its diverse medicinal uses. It is predominantly sourced from Dioscorea species, particularly Dioscorea zingiberensis. Dioscorea zingiberensis has an ability to accumulate 2-16% diosgenin in its rhizomes. In this study, a diverse population of 180 D. zingiberensis accessions was used to evaluate the genomic regions associated with diosgenin biosynthesis by the genome wide association study approach (GWAS). The whole population was characterized for diosgenin contents from tubers by gas chromatography mass spectrometry. The individuals were genotyped by the genotyping-by-sequencing approach and 10,000 high-quality SNP markers were extracted for the GWAS. The highest significant marker-trait-association was observed as an SNP transversion (G to T) on chromosome 10, with 64% phenotypic variance explained. The SNP was located in the promoter region of CYP94D144 which is a member of P450 gene family involved in the independent biosynthesis of diosgenin from cholesterol. The transcription factor (TF) binding site enrichment analysis of the promoter region of CYP94D144 revealed NAC TF as a potential regulator. The results were further validated through expression profiling by qRT-PCR, and the comparison of high and low diosgenin producing hybrids obtained from a bi-parental population. This study not only enhanced the understanding of the genetic basis of diosgenin biosynthesis but also serves as a valuable reference for future genomic investigations on CYP94D144, with the aim of augmenting diosgenin production in yam tubers.

Sections du résumé

BACKGROUND BACKGROUND
Diosgenin is an important steroidal precursor renowned for its diverse medicinal uses. It is predominantly sourced from Dioscorea species, particularly Dioscorea zingiberensis. Dioscorea zingiberensis has an ability to accumulate 2-16% diosgenin in its rhizomes. In this study, a diverse population of 180 D. zingiberensis accessions was used to evaluate the genomic regions associated with diosgenin biosynthesis by the genome wide association study approach (GWAS).
RESULTS RESULTS
The whole population was characterized for diosgenin contents from tubers by gas chromatography mass spectrometry. The individuals were genotyped by the genotyping-by-sequencing approach and 10,000 high-quality SNP markers were extracted for the GWAS. The highest significant marker-trait-association was observed as an SNP transversion (G to T) on chromosome 10, with 64% phenotypic variance explained. The SNP was located in the promoter region of CYP94D144 which is a member of P450 gene family involved in the independent biosynthesis of diosgenin from cholesterol. The transcription factor (TF) binding site enrichment analysis of the promoter region of CYP94D144 revealed NAC TF as a potential regulator. The results were further validated through expression profiling by qRT-PCR, and the comparison of high and low diosgenin producing hybrids obtained from a bi-parental population.
CONCLUSIONS CONCLUSIONS
This study not only enhanced the understanding of the genetic basis of diosgenin biosynthesis but also serves as a valuable reference for future genomic investigations on CYP94D144, with the aim of augmenting diosgenin production in yam tubers.

Identifiants

pubmed: 38872080
doi: 10.1186/s12870-024-05133-1
pii: 10.1186/s12870-024-05133-1
doi:

Substances chimiques

Diosgenin K49P2K8WLX

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

540

Subventions

Organisme : Reserve Talents Project for Young and Middle-aged Academic and Technical Leaders of Yunnan Provincial Department of Science and Technology
ID : 202105AC160047

Informations de copyright

© 2024. The Author(s).

Références

Sonawane PD, Pollier J, Panda S, Szymanski J. Plant cholesterol biosynthetic pathway overlaps with phytosterol metabolism. Nat Plants. 2016;3(1):16205. https://doi.org/10.1038/nplants.2016.205 .
doi: 10.1038/nplants.2016.205 pubmed: 28005066
Chaturvedi HC, Kidwai MJNR. Cloning of medicinal plants through tissue culture–a review. Indian J Exp Biol. 2007;45(11):937–48.
pubmed: 18072537
Wang Y, Zhang Y, Zhu Z, Zhu S. Exploration of the correlation between the structure, hemolytic activity, and cytotoxicity of steroid saponins. Bioorg Med Chem. 2007;15(7):2528–32.
doi: 10.1016/j.bmc.2007.01.058 pubmed: 17306549
Bertrand J, Liagre B, Bégaud-Grimaud G, Jauberteau MO. Analysis of relationship between cell cycle stage and apoptosis induction in K562 cells by sedimentation field-flow fractionation. J Chromatogr B. 2009;877(11):1155–61.
doi: 10.1016/j.jchromb.2009.02.064
Zhang R, Li P, Xu L, Chen Y. Enhancement of diosgenin production in Dioscorea zingiberensis cell culture by oligosaccharide elicitor from its endophytic fungus fusarium oxysporum Dzf17. Nat Prod Commun. 2009;4(11):1459–62.
pubmed: 19967973
He Z, Tian Y, Zhang X, Bing B. Anti-tumour and immunomodulating activities of diosgenin, a naturally occurring steroidal saponin. Nat Prod Res. 2012;26(23):2243–6. https://doi.org/10.1080/14786419.2011.648192 .
doi: 10.1080/14786419.2011.648192 pubmed: 22235932
Liu L, Dong YS, Xiu ZL. three-liquid-phase extraction of diosgenin and steroidal saponins from fermentation of Dioscorea Zingibernsis CH Wright. Process Biochem. 2010;45(5):752–6.
doi: 10.1016/j.procbio.2010.01.013
Hua W, Kong W, Cao X, Chen C. Transcriptome analysis of Dioscorea zingiberensis identifies genes involved in diosgenin biosynthesis. Genes Genomics. 2017;39(5):509–20. https://doi.org/10.1007/s13258-017-0516-9 .
doi: 10.1007/s13258-017-0516-9
Minato D, Li B, Zhou D, Shigeta Y. Synthesis and antitumor activity of des-AB analogue of steroidal saponin OSW-1. Tetrahedron. 2013;69(37):8019–24.
doi: 10.1016/j.tet.2013.06.105
Yi T, Fan LL, Chen HL, Zhu GY. Comparative analysis of diosgenin in Dioscorea species and related medicinal plants by UPLC-DAD-MS. BMC Biochem. 2014;15:19.
doi: 10.1186/1471-2091-15-19 pubmed: 25107333 pmcid: 4131487
Sautour M, Mitaine-OfferM A-C, Lacaille-Dubois A. The Dioscorea genus: a review of bioactive steroid saponins. J Nat Med. 2007;61(2):91–101.
doi: 10.1007/s11418-006-0126-3
Shen L, Xu J, Luo L, Hu H. Predicting the potential global distribution of diosgenin-contained Dioscorea species. Chin Med. 2018;13(1):58. https://doi.org/10.1186/s13020-018-0215-8 .
doi: 10.1186/s13020-018-0215-8 pubmed: 30479655 pmcid: 6245757
Zhang X, Liang J, Liu J, Zhao Y. Quality control and identification of steroid saponins from Dioscorea Zingiberensis C. H. Wright by fingerprint with HPLC-ELSD and HPLC-ESI-Quadrupole/Time-of-fight tandem mass spectrometry. J Pharm Biomed Anal. 2014;91:46–59 (PMID: PMC3924326).
doi: 10.1016/j.jpba.2013.11.023 pubmed: 24418811
Bai Y, Zhang L, Jin W, Wei M. in situ high-valued utilization and transformation of sugars from Dioscorea Zingiberensis C.H. Wright for clean production of diosgenin. Bioresour Technol. 2015;196:642–7.  https://www.sciencedirect.com/science/article/pii/S0960852415011141 .
doi: 10.1016/j.biortech.2015.08.010 pubmed: 26299979
Jinreng W, ZhiZunQ D, Huizhen Q. A phytogeographical study on the family Dioscoreaceae. Acta Botanica Boreali-occidentalia Sinica. 1994;14(2):128–35.
Xu DP, Hu CY, Pang LWZJ. [Isolation and structure determination of steroidal saponin from Dioscorea Zingiberensis]. Yao Xue Xue Bao. 2007;42(11):1162–5.
pubmed: 18300473
Li X, Shi JMY. Research progress and prospects of dioscorea and diosgenin. Chem Ind for Prod. 2010;30(2):107–12.
Li H, Huang W, Wen Y, Gong G. Anti-thrombotic activity and chemical characterization of steroidal saponins from Dioscorea Zingiberensis C.H. Wright. Fitoterapia. 2010;81(8):1147–56.
doi: 10.1016/j.fitote.2010.07.016 pubmed: 20659537
Qin Y, Wu X, Huang W, Gong G. Acute toxicity and sub-chronic toxicity of steroidal saponins from Dioscorea Zingiberensis C.H.Wright in rodents. J Ethnopharmacol. 2009;126(3):543–50.
doi: 10.1016/j.jep.2009.08.047 pubmed: 19735710
Heping H, Shanlin G, Lanlan C, Xiaoke J. In vitro induction and identification of autotetraploids of Dioscorea zingiberensis. In Vitro Cellular & Developmental Biology - Plant. 2008;44(5):448–55. https://doi.org/10.1007/s11627-008-9177-3 .
doi: 10.1007/s11627-008-9177-3
Dansi A, Mignouna HD, Zoundjihékpon J, Sangare A. morphological diversity, cultivar groups and possible descent in the cultivated yams (Dioscorea cayenensis/D. rotundata) complex in Benin Republic. Genet Resour Crop Evol. 1999;46(4):371–88. https://doi.org/10.1023/A:1008698123887 .
doi: 10.1023/A:1008698123887
Viruel J, Segarra-Moragues PCatalánJG. Latitudinal Environmental Niches and Riverine barriers shaped the phylogeography of the central Chilean endemic Dioscorea Humilis (Dioscoreaceae). PLoS One. 2014;9(10):e110029. https://doi.org/10.1371/journal.pone.0110029 .
doi: 10.1371/journal.pone.0110029 pubmed: 25295517 pmcid: 4190404
Ondo Ovono P, Dommes CKJ. Effects of planting methods and tuber weights on growth and yield of yam cultivars (Dioscorea rotundata Poir.) in Gabon. Int Res J Agri Sci Soil Sci. 2016;6:32.
Wang Z, Li B, XiaoD JL, Jiang C. [Regionalization study of Dioscorea Nipponica in Jilin province based on MaxEnt and ArcGIS]. Zhongguo Zhong Yao Za Zhi. 2017;42(22):4373–7.
pubmed: 29318838
Mehrafarin A, Ghaderi A, Rezazadeh S. Bioengineering of important secondary metabolites and metabolic pathways in fenugreek (Trigonella foenum-graecum L). J Med Plants. 2010;9:1–18.
Ye Y, Wang R, Jin L, Shen J. Molecular cloning and differential expression analysis of a squalene synthase gene from Dioscorea zingiberensis, an important pharmaceutical plant. Mol Biol Rep. 2014;41(9):6097–104.
doi: 10.1007/s11033-014-3487-9 pubmed: 24996285
lshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, et al. A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS One. 2011;6(5). https://doi.org/10.1371/journal.pone.0019379 .
Thakral V, Yadav H, Padalkar G, Kumawat S, Raturi G, Kumar V, Mandlik R, Rajora N, Singh M. Recent Advances and Applicability of GBS, GWAS, and GS in Polyploid Crops. In Genotyping by Sequencing for Crop Improvement (eds H. Sonah, V. Goyal, S.M. Shivaraj and R.K. Deshmukh). 2022. https://doi.org/10.1002/9781119745686.ch15 .
Chen Y, Zhou X, Ma L, Lin Y, Huang X. Chinese yam yield is affected by soil nutrient levels and interactions among N P K Fertilizers. Chin Herb Med. 2023;15(4):588–93. https://doi.org/10.1016/j.chmed.2022.11.006 .
doi: 10.1016/j.chmed.2022.11.006 pubmed: 38094011 pmcid: 10715871
Huang C, Hang Y, Zhou Y, Guo K. Analysis on quality of some main populations of Dioscorea zingiberensis in China. Chem Indus for Prod. 2003;23(2):68–72.
Deschamps S, May VLGD. Genotyping-by-sequencing in plants. Biology. 2012;1(3):460–83.
doi: 10.3390/biology1030460 pubmed: 24832503 pmcid: 4009820
Glaubitz JC, Casstevens TM, Lu F, Harriman J. A high capacity genotyping by sequencing analysis Pipeline. PLoS One. 2014;9(2):e90346. https://doi.org/10.1371/journal.pone.0090346 .
doi: 10.1371/journal.pone.0090346 pubmed: 24587335 pmcid: 3938676
Li Y, Tan C, Li Z, Guo J, et al. The genome of Dioscorea zingiberensis sheds light on the biosynthesis, origin and evolution of the medicinally important diosgenin saponins. Hortic Res. 2022;9:uhac165. https://doi.org/10.1093/hr/uhac165 . (Haut du formulaire Bas du formulaire).
doi: 10.1093/hr/uhac165 pubmed: 36204203 pmcid: 9531337
Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM. TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics. 2007;23(19):2633–5. https://doi.org/10.1093/bioinformatics/btm308 .
doi: 10.1093/bioinformatics/btm308 pubmed: 17586829
VanRaden PM. Efficient methods to compute genomic predictions. J Dairy Sci. 2008;91(11):4414–23. https://doi.org/10.3168/jds.2007-0980 .
doi: 10.3168/jds.2007-0980 pubmed: 18946147
Lipka AE, Tian F, Wang Q, Peiffer J. GAPIT: genome association and prediction integrated tool. Bioinformatics. 2012;28(18):2397–9. https://doi.org/10.1093/bioinformatics/bts444 .
doi: 10.1093/bioinformatics/bts444 pubmed: 22796960
Husson F, Josse J, Le S, Mazet J. 2017. FactoMineR: Multivariate Exploratory Data Analysis and Data Mining. https://CRAN.R-project.org/package=FactoMineR . https://www.sciencedirect.com/science/article/pii/S0167715296000892 .
Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol. 2005;14:2611–20. https://doi.org/10.1111/j.1365-294X.2005.02553.x .
doi: 10.1111/j.1365-294X.2005.02553.x pubmed: 15969739
Kumar S, Stecher G, Li M, Knyaz C. Molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547–9 (PMID: PMC5967553).
doi: 10.1093/molbev/msy096 pubmed: 29722887 pmcid: 5967553
Rashid MAR, Zhao Y, Azeem F, Zhao Y. Unveiling the genetic architecture for lodging resistance in rice (Oryza sativa L) by genome-wide association analyses. Front Genet. 2022;13:960007.
doi: 10.3389/fgene.2022.960007 pubmed: 36147492 pmcid: 9486067
Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative CT method. Nat Protoc. 2008;3:1101–8. https://doi.org/10.1038/nprot.2008.73 .
doi: 10.1038/nprot.2008.73 pubmed: 18546601
Semwal P, Painuli S, Abu-Izneid T, Rauf A. Diosgenin: an updated pharmacological review and therapeutic perspectives. Oxidative Med Cell Longev. 2022;2022(1035441):1.
doi: 10.1155/2022/1035441
Cheng J, Chen J, Liu X, Li X. The origin and evolution of the diosgenin biosynthetic pathway in yam. Plant Commun. 2021;2(1):100079 ( https://www.sciencedirect.com/science/article/pii/S2590346220301024 ).
doi: 10.1016/j.xplc.2020.100079 pubmed: 33511341
Xu X, Wang Z, Xu S, Xu M. Identifying loci controlling total starch content of leaf in Nicotiana tabacum through genome-wide association study. Funct Integr Genom. 2022;22(4):537–52. https://doi.org/10.1007/s10142-022-00851-x .
doi: 10.1007/s10142-022-00851-x
Zhao Y, Zhang H, Xu J, Jiang C. Loci and natural alleles underlying robust roots and adaptive domestication of upland ecotype rice in aerobic conditions. PLoS Genet. 2018;14(8):e1007521. https://doi.org/10.1371/journal.pgen.1007521
doi: 10.1371/journal.pgen.1007521 pubmed: 30096145 pmcid: 6086435
Bredeson JV, Lyons JB, Oniyinde IO, Okereke NR. Chromosome evolution and the genetic basis of agronomically important traits in greater yam. Nat Commun. 2022;13(1):2001. https://doi.org/10.1038/s41467-022-29114-w .
doi: 10.1038/s41467-022-29114-w pubmed: 35422045 pmcid: 9010478
Schönhals EM, Ding J, Ritter E, Paulo MJ. Physical mapping of QTL for tuber yield, starch content and starch yield in tetraploid potato (Solanum tuberosum L.) by means of genome wide genotyping by sequencing and the 8.3 K SolCAP SNP array. BMC Genomics. 2017;18(1):642. https://doi.org/10.1186/s12864-017-3979-9 .
doi: 10.1186/s12864-017-3979-9 pubmed: 28830357 pmcid: 5567664
Dossa K, Morel A, Houngbo ME, Mota AZ, Malédon E, Irep J-L, Diman J-L, Mournet P, Causse S, Van KN, Cornet D, Chair H. Genome-wide association studies reveal novel loci controlling tuber flesh color and oxidative browning in Dioscorea alata. J Sci Food Agric. 2024. https://doi.org/10.1002/jsfa.12721 .
Yano K, Yamamoto E, Aya K, Takeuchi H. Genome-wide association study using whole-genome sequencing rapidly identifies new genes influencing agronomic traits in rice. Nat Genet. 2016;48(8):927–34. https://doi.org/10.1038/ng.3596 .
doi: 10.1038/ng.3596 pubmed: 27322545
Vaidya K, Ghosh A, Kumar V, Chaudhary S. De Novo Transcriptome sequencing in Trigonella foenum-graecum L. to identify genes involved in the biosynthesis of Diosgenin. Plant Genome. 2013;6(2):plantgenome2012.08.0021. https://doi.org/10.3835/plantgenome2012.08.0021 .
doi: 10.3835/plantgenome2012.08.0021
Li J, Liang Q, Li C, Liu M. Comparative transcriptome analysis identifies putative genes involved in Dioscin Biosynthesis in Dioscorea zingiberensis. Molecules. 2018;23(2):454.
doi: 10.3390/molecules23020454 pubmed: 29463020 pmcid: 6017347
Souza CM, Schwabe TME, Pichler H, Ploier B. A stable yeast strain efficiently producing cholesterol instead of ergosterol is functional for tryptophan uptake, but not weak organic acid resistance. Metab Eng. 2011;13(5):555–69.
doi: 10.1016/j.ymben.2011.06.006 pubmed: 21741494
Christ B, Xu C, Xu M, Li F-S. Repeated evolution of cytochrome P450-mediated spiroketal steroid biosynthesis in plants. Nat Commun. 2019;10(1):3206. https://doi.org/10.1038/s41467-019-11286-7 .
doi: 10.1038/s41467-019-11286-7 pubmed: 31324795 pmcid: 6642093

Auteurs

Shi Xian Sun (SX)

Yunnan Key Laboratory of Plateau Wetland Conservation, Restoration and Ecological Services, Southwest Forestry University, Kunming, 650224, China.

Yanmei Li (Y)

Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China.

Lu Jia (L)

Department of Life Technology Teaching and Research, School of Life Science, Southwest Forestry University, Kunming, 650224, China.

Shili Ye (S)

Faculty of Mathematics and Physics, Southwest Forestry University, Kunming, 650224, China.

Yunpeng Luan (Y)

The First Affiliated Hospital of Yunnan University of Traditional Chinese Medicine, Kunming, 650021, China. Luanteam@163.com.
Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, 650021, China. Luanteam@163.com.

Articles similaires

Humans Macular Degeneration Mendelian Randomization Analysis Life Style Genome-Wide Association Study
Capsicum Disease Resistance Plant Diseases Polymorphism, Single Nucleotide Ralstonia solanacearum
Eimeria tenella Animals Antigens, Protozoan Chickens Genetic Variation

Classifications MeSH