Widespread chromatin context-dependencies of DNA double-strand break repair proteins.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
22 Jun 2024
Historique:
received: 19 02 2024
accepted: 28 05 2024
medline: 23 6 2024
pubmed: 23 6 2024
entrez: 22 6 2024
Statut: epublish

Résumé

DNA double-strand breaks are repaired by multiple pathways, including non-homologous end-joining (NHEJ) and microhomology-mediated end-joining (MMEJ). The balance of these pathways is dependent on the local chromatin context, but the underlying mechanisms are poorly understood. By combining knockout screening with a dual MMEJ:NHEJ reporter inserted in 19 different chromatin environments, we identified dozens of DNA repair proteins that modulate pathway balance dependent on the local chromatin state. Proteins that favor NHEJ mostly synergize with euchromatin, while proteins that favor MMEJ generally synergize with distinct types of heterochromatin. Examples of the former are BRCA2 and POLL, and of the latter the FANC complex and ATM. Moreover, in a diversity of human cancer types, loss of several of these proteins alters the distribution of pathway-specific mutations between heterochromatin and euchromatin. Together, these results uncover a complex network of proteins that regulate MMEJ:NHEJ balance in a chromatin context-dependent manner.

Identifiants

pubmed: 38909016
doi: 10.1038/s41467-024-49232-x
pii: 10.1038/s41467-024-49232-x
doi:

Substances chimiques

Chromatin 0
Heterochromatin 0
Euchromatin 0
BRCA2 Protein 0
Ataxia Telangiectasia Mutated Proteins EC 2.7.11.1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5334

Subventions

Organisme : ZonMw (Netherlands Organisation for Health Research and Development)
ID : 91215067
Organisme : EC | EU Framework Programme for Research and Innovation H2020 | H2020 Priority Excellent Science | H2020 European Research Council (H2020 Excellent Science - European Research Council)
ID : 694466
Organisme : U.S. Department of Health & Human Services | National Institutes of Health (NIH)
ID : U54DK107965

Informations de copyright

© 2024. The Author(s).

Références

Scully, R., Panday, A., Elango, R. & Willis, N. A. DNA double-strand break repair-pathway choice in somatic mammalian cells. Nat. Rev. Mol. Cell Biol. 20, 698–714 (2019).
pubmed: 31263220 pmcid: 7315405 doi: 10.1038/s41580-019-0152-0
O’Neil, N. J., Bailey, M. L. & Hieter, P. Synthetic lethality and cancer. Nat. Rev. Genet 18, 613–623 (2017).
pubmed: 28649135 doi: 10.1038/nrg.2017.47
Hustedt, N. & Durocher, D. The control of DNA repair by the cell cycle. Nat. Cell Biol. 19, 1–9 (2016).
pubmed: 28008184 doi: 10.1038/ncb3452
Schipler, A. & Iliakis, G. DNA double-strand-break complexity levels and their possible contributions to the probability for error-prone processing and repair pathway choice. Nucleic Acids Res. 41, 7589–7605 (2013).
pubmed: 23804754 pmcid: 3763544 doi: 10.1093/nar/gkt556
Aymard, F. et al. Transcriptionally active chromatin recruits homologous recombination at DNA double-strand breaks. Nat. Struct. Mol. Biol. 21, 366–374 (2014).
pubmed: 24658350 pmcid: 4300393 doi: 10.1038/nsmb.2796
Schep, R. et al. Impact of chromatin context on Cas9-induced DNA double-strand break repair pathway balance. Mol. Cell 81, 2216–2230.e2210 (2021).
pubmed: 33848455 pmcid: 8153251 doi: 10.1016/j.molcel.2021.03.032
Sanders, S. L. et al. Methylation of histone H4 lysine 20 controls recruitment of Crb2 to sites of DNA damage. Cell 119, 603–614 (2004).
pubmed: 15550243 doi: 10.1016/j.cell.2004.11.009
Huyen, Y. et al. Methylated lysine 79 of histone H3 targets 53BP1 to DNA double-strand breaks. Nature 432, 406–411 (2004).
pubmed: 15525939 doi: 10.1038/nature03114
Sun, Y. et al. Histone H3 methylation links DNA damage detection to activation of the tumour suppressor Tip60. Nat. Cell Biol. 11, 1376–1382 (2009).
pubmed: 19783983 pmcid: 2783526 doi: 10.1038/ncb1982
van Overbeek, M. et al. DNA repair profiling reveals nonrandom outcomes at Cas9-mediated breaks. Mol. Cell 63, 633–646 (2016).
pubmed: 27499295 doi: 10.1016/j.molcel.2016.06.037
Setiaputra, D. & Durocher, D. Shieldin—the protector of DNA ends. EMBO Rep. 20, e47560 (2019).
Xie, Y. et al. RBX1 prompts degradation of EXO1 to limit the homologous recombination pathway of DNA double-strand break repair in G1 phase. Cell Death Differ. 27, 1383–1397 (2020).
pubmed: 31562368 doi: 10.1038/s41418-019-0424-4
Robert, F., Barbeau, M., Ethier, S., Dostie, J. & Pelletier, J. Pharmacological inhibition of DNA-PK stimulates Cas9-mediated genome editing. Genome. Med. 7, 93 (2015).
pubmed: 26307031 pmcid: 4550049 doi: 10.1186/s13073-015-0215-6
Chu, V. T. et al. Increasing the efficiency of homology-directed repair for CRISPR-Cas9-induced precise gene editing in mammalian cells. Nat. Biotechnol. 33, 543–548 (2015).
pubmed: 25803306 doi: 10.1038/nbt.3198
Tsai, C. J., Kim, S. A. & Chu, G. Cernunnos/XLF promotes the ligation of mismatched and noncohesive DNA ends. Proc. Natl Acad. Sci. USA 104, 7851–7856 (2007).
pubmed: 17470781 pmcid: 1859989 doi: 10.1073/pnas.0702620104
Craxton, A. et al. PAXX and its paralogs synergistically direct DNA polymerase lambda activity in DNA repair. Nat. Commun. 9, 3877 (2018).
pubmed: 30250067 pmcid: 6155126 doi: 10.1038/s41467-018-06127-y
Hussmann, J. A. et al. Mapping the genetic landscape of DNA double-strand break repair. Cell 184, 5653–5669.e5625 (2021).
pubmed: 34672952 pmcid: 9074467 doi: 10.1016/j.cell.2021.10.002
Howard, S. M., Yanez, D. A. & Stark, J. M. DNA damage response factors from diverse pathways, including DNA crosslink repair, mediate alternative end joining. PLoS Genet 11, e1004943 (2015).
pubmed: 25629353 pmcid: 4309583 doi: 10.1371/journal.pgen.1004943
Akhtar, W. et al. Chromatin position effects assayed by thousands of reporters integrated in parallel. Cell 154, 914–927 (2013).
pubmed: 23953119 doi: 10.1016/j.cell.2013.07.018
Corrales, M. et al. Clustering of drosophila housekeeping promoters facilitates their expression. Genome. Res. 27, 1153–1161 (2017).
pubmed: 28420691 pmcid: 5495067 doi: 10.1101/gr.211433.116
Leemans, C. et al. Promoter-intrinsic and local chromatin features determine gene repression in LADs. Cell 177, 852–864.e814 (2019).
pubmed: 30982597 pmcid: 6506275 doi: 10.1016/j.cell.2019.03.009
Sfeir, A. & Symington, L. S. Microhomology-mediated end joining: a back-up survival mechanism or dedicated pathway? Trends Biochem. Sci. 40, 701–714 (2015).
pubmed: 26439531 pmcid: 4638128 doi: 10.1016/j.tibs.2015.08.006
Koob, L. et al. MND1 enables homologous recombination in somatic cells primarily outside the context of replication. Mol. Oncol. 17, 1192–1211 (2023).
pubmed: 37195379 pmcid: 10323883 doi: 10.1002/1878-0261.13448
Zimmermann, M. et al. CRISPR screens identify genomic ribonucleotides as a source of PARP-trapping lesions. Nature 559, 285–289 (2018).
pubmed: 29973717 pmcid: 6071917 doi: 10.1038/s41586-018-0291-z
Moynahan, M. E., Chiu, J. W., Koller, B. H. & Jasin, M. Brca1 controls homology-directed DNA repair. Mol. Cell 4, 511–518 (1999).
pubmed: 10549283 doi: 10.1016/S1097-2765(00)80202-6
Khongkow, P. et al. FOXM1 targets NBS1 to regulate DNA damage-induced senescence and epirubicin resistance. Oncogene 33, 4144–4155 (2014).
pubmed: 24141789 doi: 10.1038/onc.2013.457
Kriegs, M. et al. The epidermal growth factor receptor modulates DNA double-strand break repair by regulating non-homologous end-joining. DNA Repair (Amst.) 9, 889–897 (2010).
pubmed: 20615764 doi: 10.1016/j.dnarep.2010.05.005
Wan, L. et al. Scaffolding protein SPIDR/KIAA0146 connects the bloom syndrome helicase with homologous recombination repair. Proc. Natl Acad. Sci. USA 110, 10646–10651 (2013).
pubmed: 23509288 pmcid: 3696769 doi: 10.1073/pnas.1220921110
Stark, C. et al. BioGRID: a general repository for interaction datasets. Nucleic Acids Res. 34, D535–D539 (2006).
pubmed: 16381927 doi: 10.1093/nar/gkj109
Goodarzi, A. A. et al. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31, 167–177 (2008).
pubmed: 18657500 doi: 10.1016/j.molcel.2008.05.017
Chiolo, I. et al. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144, 732–744 (2011).
pubmed: 21353298 pmcid: 3417143 doi: 10.1016/j.cell.2011.02.012
Crossan, G. P. & Patel, K. J. The Fanconi anaemia pathway orchestrates incisions at sites of crosslinked DNA. J. Pathol. 226, 326–337 (2012).
pubmed: 21956823 doi: 10.1002/path.3002
Torres-Rosell, J. et al. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9, 923–931 (2007).
pubmed: 17643116 doi: 10.1038/ncb1619
Matsuoka, S. et al. Ataxia telangiectasia-mutated phosphorylates Chk2 in vivo and in vitro. Proc. Natl Acad. Sci. USA 97, 10389–10394 (2000).
pubmed: 10973490 pmcid: 27034 doi: 10.1073/pnas.190030497
Shiloh, Y. & Ziv, Y. The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat. Rev. Mol. Cell Biol. 14, 197–210 (2013).
pubmed: 23847781 doi: 10.1038/nrm3546
Choi, S., Gamper, A. M., White, J. S. & Bakkenist, C. J. Inhibition of ATM kinase activity does not phenocopy ATM protein disruption: implications for the clinical utility of ATM kinase inhibitors. Cell Cycle 9, 4052–4057 (2010).
pubmed: 20953138 pmcid: 3230471 doi: 10.4161/cc.9.20.13471
Cortez, D., Wang, Y., Qin, J. & Elledge, S. J. Requirement of ATM-dependent phosphorylation of brca1 in the DNA damage response to double-strand breaks. Science 286, 1162–1166 (1999).
pubmed: 10550055 doi: 10.1126/science.286.5442.1162
Nambiar, T. S., Baudrier, L., Billon, P. & Ciccia, A. CRISPR-based genome editing through the lens of DNA repair. Mol. Cell 82, 348–388 (2022).
pubmed: 35063100 pmcid: 8887926 doi: 10.1016/j.molcel.2021.12.026
Feng, L., Wang, J. & Chen, J. The Lys63-specific deubiquitinating enzyme BRCC36 is regulated by two scaffold proteins localizing in different subcellular compartments. J. Biol. Chem. 285, 30982–30988 (2010).
pubmed: 20656690 pmcid: 2945589 doi: 10.1074/jbc.M110.135392
Hu, Y. et al. RAP80-directed tuning of BRCA1 homologous recombination function at ionizing radiation-induced nuclear foci. Genes Dev. 25, 685–700 (2011).
pubmed: 21406551 pmcid: 3070932 doi: 10.1101/gad.2011011
Ahrabi, S. et al. A role for human homologous recombination factors in suppressing microhomology-mediated end joining. Nucleic Acids Res. 44, 5743–5757 (2016).
pubmed: 27131361 pmcid: 4937322 doi: 10.1093/nar/gkw326
Zamborszky, J. et al. Loss of BRCA1 or BRCA2 markedly increases the rate of base substitution mutagenesis and has distinct effects on genomic deletions. Oncogene 36, 746–755 (2017).
pubmed: 27452521 doi: 10.1038/onc.2016.243
Icgc Tcga pan-cancer analysis of whole genomes consortium. Pan-cancer analysis of whole genomes. Nature 578, 82–93 (2020).
Radhakrishnan, S. et al. The whole-genome panorama of cancer drivers. bioRxiv, 190330 (2017).
Moore, L. et al. The mutational landscape of normal human endometrial epithelium. Nature 580, 640–646 (2020).
pubmed: 32350471 doi: 10.1038/s41586-020-2214-z
Webster, A. L. H. et al. Genomic signature of fanconi anaemia DNA repair pathway deficiency in cancer. Nature 612, 495–502 (2022).
pubmed: 36450981 pmcid: 10202100 doi: 10.1038/s41586-022-05253-4
Clouaire, T. & Legube, G. A Snapshot on the Cis chromatin response to DNA double-strand breaks. Trends Genet. 35, 330–345 (2019).
pubmed: 30898334 doi: 10.1016/j.tig.2019.02.003
Li, X. et al. Chromatin context-dependent regulation and epigenetic manipulation of prime editing. Cell 187, 2411–2427 (2024).
Ruben, S. et al. Chromatin context-dependent effects of epigenetic drugs on CRISPR-Cas9 editing. bioRxiv, 2023–05 (2023).
Shivji, M. K. K., Renaudin, X., Williams, C. H. & Venkitaraman, A. R. BRCA2 regulates transcription elongation by RNA polymerase II to prevent R-loop accumulation. Cell Rep. 22, 1031–1039 (2018).
pubmed: 29386125 pmcid: 5846855 doi: 10.1016/j.celrep.2017.12.086
Aleksandrov, R. et al. Protein dynamics in complex DNA lesions. Mol. Cell 69, 1046–1061.e1045 (2018).
pubmed: 29547717 doi: 10.1016/j.molcel.2018.02.016
Akhtar, W. et al. Using TRIP for genome-wide position effect analysis in cultured cells. Nat. Protoc. 9, 1255–1281 (2014).
pubmed: 24810036 doi: 10.1038/nprot.2014.072
van den Berg, J. et al. A limited number of double-strand DNA breaks is sufficient to delay cell cycle progression. Nucleic Acids Res. 46, 10132–10144 (2018).
pubmed: 30184135 pmcid: 6212793 doi: 10.1093/nar/gky786
Shen, M. W. et al. Predictable and precise template-free CRISPR editing of pathogenic variants. Nature 563, 646–651 (2018).
pubmed: 30405244 pmcid: 6517069 doi: 10.1038/s41586-018-0686-x
Alkan, F., Wenzel, A., Anthon, C., Havgaard, J. H. & Gorodkin, J. CRISPR-Cas9 off-targeting assessment with nucleic acid duplex energy parameters. Genome. Biol. 19, 177 (2018).
pubmed: 30367669 pmcid: 6203265 doi: 10.1186/s13059-018-1534-x
Friskes, A. et al. Double-strand break toxicity is chromatin context independent. Nucleic Acids Res. 50, 9930–9947 (2022).
pubmed: 36107780 pmcid: 9508844 doi: 10.1093/nar/gkac758
Hendel, A. et al. Quantifying genome-editing outcomes at endogenous loci with SMRT sequencing. Cell Rep. 7, 293–305 (2014).
pubmed: 24685129 pmcid: 4015468 doi: 10.1016/j.celrep.2014.02.040
Schep, R., Leemans, C., Brinkman, E. K., van Schaik, T. & van Steensel, B. Protocol: A multiplexed reporter assay to study effects of chromatin context on DNA double-strand break repair. Front Genet 12, 785947 (2021).
pubmed: 35173762 doi: 10.3389/fgene.2021.785947
Kind, J. et al. Genome-wide maps of nuclear lamina interactions in single human cells. Cell 163, 134–147 (2015).
pubmed: 26365489 pmcid: 4583798 doi: 10.1016/j.cell.2015.08.040
Efron, B. Bootstrap methods: another look at the jackknife. Ann. Stat. 7, 1–26 (1979).
doi: 10.1214/aos/1176344552
Vergara, X. et al. Widespread chromatin context-dependencies of DNA double-strand break repair proteins. Zenodo https://doi.org/10.5281/zenodo.11094190 (2024).

Auteurs

Xabier Vergara (X)

Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Anna G Manjón (AG)

Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Marcel de Haas (M)

Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Ben Morris (B)

NKI Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Ruben Schep (R)

Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Christ Leemans (C)

Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Anoek Friskes (A)

Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Oncode Institute, Utrecht, The Netherlands.

Roderick L Beijersbergen (RL)

NKI Robotics and Screening Center, Netherlands Cancer Institute, Amsterdam, The Netherlands.
Division of Molecular Carcinogenesis, Netherlands Cancer Institute, Amsterdam, The Netherlands.

Mathijs A Sanders (MA)

Department of Hematology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
Cancer, Ageing and Somatic Mutation (CASM), Wellcome Sanger Institute, Hinxton, UK.

René H Medema (RH)

Division of Cell Biology, Netherlands Cancer Institute, Amsterdam, The Netherlands. r.medema@nki.nl.
Oncode Institute, Utrecht, The Netherlands. r.medema@nki.nl.

Bas van Steensel (B)

Division of Gene Regulation, Netherlands Cancer Institute, Amsterdam, The Netherlands. b.v.steensel@nki.nl.
Division of Molecular Genetics, Netherlands Cancer Institute, Amsterdam, The Netherlands. b.v.steensel@nki.nl.
Oncode Institute, Utrecht, The Netherlands. b.v.steensel@nki.nl.
Department of Cell Biology, Erasmus University Medical Center, Rotterdam, The Netherlands. b.v.steensel@nki.nl.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH