Sodium-glucose cotransporter 2 inhibitors induce anti-inflammatory and anti-ferroptotic shift in epicardial adipose tissue of subjects with severe heart failure.
Humans
Sodium-Glucose Transporter 2 Inhibitors
/ therapeutic use
Heart Failure
/ metabolism
Middle Aged
Male
Female
Pericardium
/ metabolism
Adipose Tissue
/ drug effects
Treatment Outcome
Inflammation Mediators
/ metabolism
Severity of Illness Index
Stroke Volume
/ drug effects
Anti-Inflammatory Agents
/ therapeutic use
Ventricular Function, Left
/ drug effects
Diabetes Mellitus, Type 2
/ drug therapy
Metabolomics
Biomarkers
/ blood
Epicardial Adipose Tissue
Adipose tissue
Ether lipids
Heart failure
Inflammation
Sodium-glucose cotransporter 2 inhibitors
Journal
Cardiovascular diabetology
ISSN: 1475-2840
Titre abrégé: Cardiovasc Diabetol
Pays: England
ID NLM: 101147637
Informations de publication
Date de publication:
28 Jun 2024
28 Jun 2024
Historique:
received:
03
03
2024
accepted:
05
06
2024
medline:
29
6
2024
pubmed:
29
6
2024
entrez:
29
6
2024
Statut:
epublish
Résumé
Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are glucose-lowering agents used for the treatment of type 2 diabetes mellitus, which also improve heart failure and decrease the risk of cardiovascular complications. Epicardial adipose tissue (EAT) dysfunction was suggested to contribute to the development of heart failure. We aimed to elucidate a possible role of changes in EAT metabolic and inflammatory profile in the beneficial cardioprotective effects of SGLT-2i in subjects with severe heart failure. 26 subjects with severe heart failure, with reduced ejection fraction, treated with SGLT-2i versus 26 subjects without treatment, matched for age (54.0 ± 2.1 vs. 55.3 ± 2.1 years, n.s.), body mass index (27.8 ± 0.9 vs. 28.8 ± 1.0 kg/m SGLT-2i ameliorated inflammation, as evidenced by the improved gene expression profile of pro-inflammatory genes in adipose tissue and decreased infiltration of immune cells into EAT. Enrichment of ether lipids with oleic acid noted on metabolomic analysis suggests a reduced disposition to ferroptosis, potentially further contributing to decreased oxidative stress in EAT of SGLT-2i treated subjects. Our results show decreased inflammation in EAT of patients with severe heart failure treated by SGLT-2i, as compared to patients with heart failure without this therapy. Modulation of EAT inflammatory and metabolic status could represent a novel mechanism behind SGLT-2i-associated cardioprotective effects in patients with heart failure.
Sections du résumé
BACKGROUND
BACKGROUND
Sodium-glucose cotransporter 2 inhibitors (SGLT-2i) are glucose-lowering agents used for the treatment of type 2 diabetes mellitus, which also improve heart failure and decrease the risk of cardiovascular complications. Epicardial adipose tissue (EAT) dysfunction was suggested to contribute to the development of heart failure. We aimed to elucidate a possible role of changes in EAT metabolic and inflammatory profile in the beneficial cardioprotective effects of SGLT-2i in subjects with severe heart failure.
METHODS
METHODS
26 subjects with severe heart failure, with reduced ejection fraction, treated with SGLT-2i versus 26 subjects without treatment, matched for age (54.0 ± 2.1 vs. 55.3 ± 2.1 years, n.s.), body mass index (27.8 ± 0.9 vs. 28.8 ± 1.0 kg/m
RESULTS
RESULTS
SGLT-2i ameliorated inflammation, as evidenced by the improved gene expression profile of pro-inflammatory genes in adipose tissue and decreased infiltration of immune cells into EAT. Enrichment of ether lipids with oleic acid noted on metabolomic analysis suggests a reduced disposition to ferroptosis, potentially further contributing to decreased oxidative stress in EAT of SGLT-2i treated subjects.
CONCLUSIONS
CONCLUSIONS
Our results show decreased inflammation in EAT of patients with severe heart failure treated by SGLT-2i, as compared to patients with heart failure without this therapy. Modulation of EAT inflammatory and metabolic status could represent a novel mechanism behind SGLT-2i-associated cardioprotective effects in patients with heart failure.
Identifiants
pubmed: 38943140
doi: 10.1186/s12933-024-02298-9
pii: 10.1186/s12933-024-02298-9
doi:
Substances chimiques
Sodium-Glucose Transporter 2 Inhibitors
0
Inflammation Mediators
0
Anti-Inflammatory Agents
0
Biomarkers
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
223Subventions
Organisme : Ministerstvo Zdravotnictví Ceské Republiky
ID : NV19-02-00118
Organisme : National Institute for Research of Metabolic and Cardiovascular Diseases
ID : Programme EXCELES, ID Project No. LX22NPO5104 - Funded by the European Union- Next Generation EU
Organisme : CZ - DRO (Institute for Clinical and Experimental Medicine- IKEM)
ID : IN 00023001
Informations de copyright
© 2024. The Author(s).
Références
Bozkurt B, Coats AJS, Tsutsui H, Abdelhamid CM, Adamopoulos S, Albert N, Anker SD, Atherton J, Böhm M, Butler J, et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart failure. Eur J Heart Fail. 2021;23(3):352–80.
pubmed: 33605000
doi: 10.1002/ejhf.2115
Lippi G, Sanchis-Gomar F. Global epidemiology and future trends of heart failure. AME Med J. 2020;5:15.
doi: 10.21037/amj.2020.03.03
Groenewegen A, Rutten FH, Mosterd A, Hoes AW. Epidemiology of heart failure. Eur J Heart Fail. 2020;22(8):1342–56.
pubmed: 32483830
doi: 10.1002/ejhf.1858
McDonagh TA, Metra M, Adamo M, Gardner RS, Baumbach A, Bohm M, Burri H, Butler J, Celutkiene J, Chioncel O, et al. 2021 ESC guidelines for the diagnosis and treatment of acute and chronic heart failure: developed by the task force for the diagnosis and treatment of acute and chronic heart failure of the European Society of Cardiology (ESC) with the special contribution of the Heart Failure Association (HFA) of the ESC. Rev Esp Cardiol (Engl Ed). 2022;75(6):523.
pubmed: 35636830
Yancy CW, Jessup M, Bozkurt B, Butler J, Casey DE, Colvin MM, Drazner MH, Filippatos GS, Fonarow GC, Givertz MM, et al. 2017 ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice guidelines and the Heart Failure Society of America. J Am Coll Cardiol. 2017;70(6):776–803.
pubmed: 28461007
doi: 10.1016/j.jacc.2017.04.025
Zinman B, Wanner C, Lachin JM, Fitchett D, Bluhmki E, Hantel S, Mattheus M, Devins T, Johansen OE, Woerle HJ, et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373(22):2117–28.
pubmed: 26378978
doi: 10.1056/NEJMoa1504720
Wiviott SD, Raz I, Bonaca MP, Mosenzon O, Kato ET, Cahn A, Silverman MG, Zelniker TA, Kuder JF, Murphy SA, et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380(4):347–57.
pubmed: 30415602
doi: 10.1056/NEJMoa1812389
Neal B, Perkovic V, Matthews DR. Canagliflozin and cardiovascular and renal events in type 2 diabetes. N Engl J Med. 2017;377(21):2099.
pubmed: 29166232
Packer M, Anker SD, Butler J, Filippatos G, Pocock SJ, Carson P, Januzzi J, Verma S, Tsutsui H, Brueckmann M, et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383(15):1413–24.
pubmed: 32865377
doi: 10.1056/NEJMoa2022190
McMurray JJV, Solomon SD, Inzucchi SE, Køber L, Kosiborod MN, Martinez FA, Ponikowski P, Sabatine MS, Anand IS, Bělohlávek J, et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381(21):1995–2008.
pubmed: 31535829
doi: 10.1056/NEJMoa1911303
Anker SD, Butler J, Filippatos G, Ferreira JP, Bocchi E, Bohm M, Brunner-La Rocca HP, Choi DJ, Chopra V, Chuquiure-Valenzuela E, et al. Empagliflozin in heart failure with a preserved ejection fraction. N Engl J Med. 2021;385(16):1451–61.
pubmed: 34449189
doi: 10.1056/NEJMoa2107038
Solomon SD, McMurray JJV, Claggett B, de Boer RA, DeMets D, Hernandez AF, Inzucchi SE, Kosiborod MN, Lam CSP, Martinez F, et al. Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction. N Engl J Med. 2022;387(12):1089–98.
pubmed: 36027570
doi: 10.1056/NEJMoa2206286
Lin C, Cai X, Ji L. Cardiovascular benefits beyond urinary glucose excretion: a hypothesis generated from two meta-analyses. Diabetes Obes Metab. 2022;24(3):550–4.
pubmed: 34726334
doi: 10.1111/dom.14596
Dyck JRB, Sossalla S, Hamdani N, Coronel R, Weber NC, Light PE, Zuurbier CJ. Cardiac mechanisms of the beneficial effects of SGLT2 inhibitors in heart failure: evidence for potential off-target effects. J Mol Cell Cardiol. 2022;167:17–31.
pubmed: 35331696
doi: 10.1016/j.yjmcc.2022.03.005
Aguilar-Gallardo JS, Correa A, Contreras JP. Cardio-renal benefits of sodium–glucose co-transporter 2 inhibitors in heart failure with reduced ejection fraction: mechanisms and clinical evidence. Eur Heart J Cardiovasc Pharmacother. 2021;8(3):311–21.
doi: 10.1093/ehjcvp/pvab056
Theofilis P, Sagris M, Oikonomou E, Antonopoulos AS, Siasos G, Tsioufis K, Tousoulis D. Pleiotropic effects of SGLT2 inhibitors and heart failure outcomes. Diabetes Res Clin Pract. 2022;188:109927.
pubmed: 35577035
doi: 10.1016/j.diabres.2022.109927
Mullens W, Martens P. Empagliflozin-Induced changes in epicardial fat. JACC: Heart Fail. 2021;9(8):590–3.
pubmed: 34325889
Iacobellis G, Corradi D, Sharma AM. Epicardial adipose tissue: anatomic, biomolecular and clinical relationships with the heart. Nat Clin Pract Cardiovasc Med. 2005;2(10):536–43.
pubmed: 16186852
doi: 10.1038/ncpcardio0319
Matloch Z, Kotulak T, Haluzik M. The role of epicardial adipose tissue in heart disease. Physiol Res. 2016;65(1):23–32.
pubmed: 26596323
doi: 10.33549/physiolres.933036
Iacobellis G, Baroni MG. Cardiovascular risk reduction throughout GLP-1 receptor agonist and SGLT2 inhibitor modulation of epicardial fat. J Endocrinol Investig. 2022;45(3):489–95.
doi: 10.1007/s40618-021-01687-1
Sacks HS, Fain JN. Human epicardial adipose tissue: a review. Am Heart J. 2007;153(6):907–17.
pubmed: 17540190
doi: 10.1016/j.ahj.2007.03.019
Rossi VA, Gruebler M, Monzo L, Galluzzo A, Beltrami M. The different pathways of epicardial adipose tissue across the heart failure phenotypes: from pathophysiology to therapeutic target. Int J Mol Sci. 2023;24(7):6838.
pubmed: 37047810
pmcid: 10095298
doi: 10.3390/ijms24076838
Gorter TM, van Woerden G, Rienstra M, Dickinson MG, Hummel YM, Voors AA, Hoendermis ES, van Veldhuisen DJ. Epicardial adipose tissue and invasive hemodynamics in heart failure with preserved ejection fraction. JACC Heart Fail. 2020;8(8):667–76.
pubmed: 32653444
doi: 10.1016/j.jchf.2020.06.003
Wu CK, Lee JK, Hsu JC, Su MM, Wu YF, Lin TT, Lan CW, Hwang JJ, Lin LY. Myocardial adipose deposition and the development of heart failure with preserved ejection fraction. Eur J Heart Fail. 2020;22(3):445–54.
pubmed: 31696627
doi: 10.1002/ejhf.1617
Packer M. Epicardial Adipose tissue May Mediate Deleterious effects of obesity and inflammation on the myocardium. J Am Coll Cardiol. 2018;71(20):2360–72.
pubmed: 29773163
doi: 10.1016/j.jacc.2018.03.509
Elsanhoury A, Nelki V, Kelle S, Van Linthout S, Tschope C. Epicardial fat expansion in diabetic and obese patients with heart failure and preserved ejection fraction—a specific HFpEF phenotype. Front Cardiovasc Med. 2021;8:720690.
pubmed: 34604353
pmcid: 8484763
doi: 10.3389/fcvm.2021.720690
Venkateshvaran A, Faxen UL, Hage C, Michaëlsson E, Svedlund S, Saraste A, Beussink-Nelson L, Fermer ML, Gan LM, Tromp J, et al. Association of epicardial adipose tissue with proteomics, coronary flow reserve, cardiac structure and function, and quality of life in heart failure with preserved ejection fraction: insights from the PROMIS-HFpEF study. Eur J Heart Fail. 2022;24(12):2251–60.
pubmed: 36196462
doi: 10.1002/ejhf.2709
Pugliese NR, Paneni F, Mazzola M, De Biase N, Del Punta L, Gargani L, Mengozzi A, Virdis A, Nesti L, Taddei S, et al. Impact of epicardial adipose tissue on cardiovascular haemodynamics, metabolic profile, and prognosis in heart failure. Eur J Heart Fail. 2021;23(11):1858–71.
pubmed: 34427016
doi: 10.1002/ejhf.2337
Doesch C, Haghi D, Flüchter S, Suselbeck T, Schoenberg SO, Michaely H, Borggrefe M, Papavassiliu T. Epicardial adipose tissue in patients with heart failure. J Cardiovasc Magn Reson. 2010;12(1):40.
pubmed: 20624277
pmcid: 2914772
doi: 10.1186/1532-429X-12-40
Requena-Ibáñez JA, Santos-Gallego CG, Rodriguez-Cordero A, Vargas-Delgado AP, Mancini D, Sartori S, Atallah-Lajam F, Giannarelli C, Macaluso F, Lala A, et al. Mechanistic insights of empagliflozin in nondiabetic patients with HFrEF: from the EMPA-TROPISM study. JACC: Heart Fail. 2021;9(8):578–89.
pubmed: 34325888
Iacobellis G, Gra-Menendez S. Effects of dapagliflozin on epicardial fat thickness in patients with type 2 diabetes and obesity. Obesity. 2020;28(6):1068–74.
pubmed: 32352644
doi: 10.1002/oby.22798
Yagi S, Hirata Y, Ise T, Kusunose K, Yamada H, Fukuda D, Salim HM, Maimaituxun G, Nishio S, Takagawa Y, et al. Canagliflozin reduces epicardial fat in patients with type 2 diabetes mellitus. Diabetol Metab Syndr. 2017;9(1):78.
pubmed: 29034006
pmcid: 5628447
doi: 10.1186/s13098-017-0275-4
Gaborit B, Ancel P, Abdullah AE, Maurice F, Abdesselam I, Calen A, Soghomonian A, Houssays M, Varlet I, Eisinger M, et al. Effect of empagliflozin on ectopic fat stores and myocardial energetics in type 2 diabetes: the EMPACEF study. Cardiovasc Diabetol. 2021;20(1):57.
pubmed: 33648515
pmcid: 7919089
doi: 10.1186/s12933-021-01237-2
World Medical Association Declaration of Helsinki: Ethical Principles for Medical Research Involving Human Subjects ( https://www.wma.net/policies-post/wma-declaration-of-helsinki-ethical-principles-for-medical-research-involving-human-subjects/ ).
Martin FJ, Amode MR, Aneja A, Austine-Orimoloye O, Azov AG, Barnes I, Becker A, Bennett R, Berry A, Bhai J, et al. Ensembl 2023. Nucleic Acids Res. 2023;51(D1):D933–41.
pubmed: 36318249
doi: 10.1093/nar/gkac958
Love MI, Huber W, Anders S. Moderated estimation of Fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550.
pubmed: 25516281
pmcid: 4302049
doi: 10.1186/s13059-014-0550-8
Wu T, Hu E, Xu S, Chen M, Guo P, Dai Z, Feng T, Zhou L, Tang W, Zhan L, et al. clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Cambridge). 2021;2(3):100141.
Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25(1):25–9.
pubmed: 10802651
pmcid: 3037419
doi: 10.1038/75556
Gene Ontology C, Aleksander SA, Balhoff J, Carbon S, Cherry JM, Drabkin HJ, Ebert D, Feuermann M, Gaudet P, Harris NL, et al. The gene ontology knowledgebase in 2023. Genetics. 2023;224(1):iyad031.
doi: 10.1093/genetics/iyad031
Milacic M, Beavers D, Conley P, Gong C, Gillespie M, Griss J, Haw R, Jassal B, Matthews L, May B, et al. The reactome pathway knowledgebase 2024. Nucleic Acids Res. 2024;52(D1):D672–8.
pubmed: 37941124
doi: 10.1093/nar/gkad1025
Pico AR, Kelder T, van Iersel MP, Hanspers K, Conklin BR, Evelo C. WikiPathways: pathway editing for the people. PLoS Biol. 2008;6(7):e184.
pubmed: 18651794
pmcid: 2475545
doi: 10.1371/journal.pbio.0060184
Agrawal A, Balci H, Hanspers K, Coort SL, Martens M, Slenter DN, Ehrhart F, Digles D, Waagmeester A, Wassink I, et al. WikiPathways 2024: next generation pathway database. Nucleic Acids Res. 2024;52(D1):D679–89.
pubmed: 37941138
doi: 10.1093/nar/gkad960
Schriml LM, Mitraka E, Munro J, Tauber B, Schor M, Nickle L, Felix V, Jeng L, Bearer C, Lichenstein R, et al. Human Disease Ontology 2018 update: classification, content and workflow expansion. Nucleic Acids Res. 2019;47(D1):D955–62.
pubmed: 30407550
doi: 10.1093/nar/gky1032
Brezinova M, Cajka T, Oseeva M, Stepan M, Dadova K, Rossmeislova L, Matous M, Siklova M, Rossmeisl M, Kuda O. Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women. Biochim Biophys Acta Mol Cell Biol Lipids. 2020;1865(2):158576.
pubmed: 31740387
doi: 10.1016/j.bbalip.2019.158576
Brezinova M, Kuda O, Hansikova J, Rombaldova M, Balas L, Bardova K, Durand T, Rossmeisl M, Cerna M, Stranak Z, et al. Levels of palmitic acid ester of hydroxystearic acid (PAHSA) are reduced in the breast milk of obese mothers. Biochim Biophys Acta Mol Cell Biol Lipids. 2018;1863(2):126–31.
pubmed: 29154942
doi: 10.1016/j.bbalip.2017.11.004
Pang Z, Chong J, Zhou G, de Lima Morais DA, Chang L, Barrette M, Gauthier C, Jacques PE, Li S, Xia J. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021;49(W1):W388–96.
pubmed: 34019663
pmcid: 8265181
doi: 10.1093/nar/gkab382
Collaborative. data science ( https://plot.ly ).
Diaz-Rodriguez E, Agra RM, Fernandez AL, Adrio B, Garcia-Caballero T, Gonzalez-Juanatey JR, Eiras S. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc Res. 2018;114(2):336–46.
pubmed: 29016744
doi: 10.1093/cvr/cvx186
Lauritsen KM, Voigt JH, Pedersen SB, Hansen TK, Moller N, Jessen N, Gormsen LC, Sondergaard E. Effects of SGLT2 inhibition on lipid transport in adipose tissue in type 2 diabetes. Endocr Connect. 2022;11(4):e210558.
pubmed: 35234661
pmcid: 9066578
doi: 10.1530/EC-21-0558
Monzo L, Sedlacek K, Hromanikova K, Tomanova L, Borlaug BA, Jabor A, Kautzner J, Melenovsky V. Myocardial ketone body utilization in patients with heart failure: the impact of oral ketone ester. Metabolism. 2021;115:154452.
pubmed: 33248064
doi: 10.1016/j.metabol.2020.154452
Masson W, Lavalle-Cobo A, Nogueira JP. Effect of SGLT2-inhibitors on epicardial adipose tissue: a meta-analysis. Cells. 2021;10(8):2150.
pubmed: 34440918
pmcid: 8391573
doi: 10.3390/cells10082150
Marfella R, Scisciola L, D’Onofrio N, Maiello C, Trotta MC, Sardu C, Panarese I, Ferraraccio F, Capuano A, Barbieri M, et al. Sodium-glucose cotransporter-2 (SGLT2) expression in diabetic and non-diabetic failing human cardiomyocytes. Pharmacol Res. 2022;184:106448.
pubmed: 36096423
doi: 10.1016/j.phrs.2022.106448
Marfella R, D’Onofrio N, Trotta MC, Sardu C, Scisciola L, Amarelli C, Balestrieri ML, Grimaldi V, Mansueto G, Esposito S, et al. Sodium/glucose cotransporter 2 (SGLT2) inhibitors improve cardiac function by reducing JunD expression in human diabetic hearts. Metabolism. 2022;127:154936.
pubmed: 34801581
doi: 10.1016/j.metabol.2021.154936
Antonopoulos AS, Antoniades C. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J Physiol. 2017;595(12):3907–17.
pubmed: 28191635
pmcid: 5471417
doi: 10.1113/JP273049
Lage R, Moscoso I, Fernandez-Trasancos A, Cebro M, Couselo M, Fandino-Vaquero R, Bravo SB, Sierra J, Gonzalez-Juanatey JR, Eiras S. Differential behaviour of epicardial adipose tissue-secretomes with high and low orosomucoid levels from patients with cardiovascular disease in H9C2 cells. Mol Cell Endocrinol. 2015;416:77–87.
pubmed: 26343163
doi: 10.1016/j.mce.2015.08.025
Mazurek T, Zhang L, Zalewski A, Mannion JD, Diehl JT, Arafat H, Sarov-Blat L, O’Brien S, Keiper EA, Johnson AG, et al. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation. 2003;108(20):2460–6.
pubmed: 14581396
doi: 10.1161/01.CIR.0000099542.57313.C5
Nattel S. Molecular and cellular mechanisms of atrial fibrosis in atrial fibrillation. JACC Clin Electrophysiol. 2017;3(5):425–35.
pubmed: 29759598
doi: 10.1016/j.jacep.2017.03.002
Zhao L, Guo Z, Wang P, Zheng M, Yang X, Liu Y, Ma Z, Chen M, Yang X. Proteomics of epicardial adipose tissue in patients with heart failure. J Cell Mol Med. 2020;24(1):511–20.
pubmed: 31670476
doi: 10.1111/jcmm.14758
Fosshaug LE, Dahl CP, Risnes I, Bohov P, Berge RK, Nymo S, Geiran O, Yndestad A, Gullestad L, Aukrust P, et al. Altered levels of fatty acids and inflammatory and metabolic mediators in epicardial adipose tissue in patients with systolic heart failure. J Card Fail. 2015;21(11):916–23.
pubmed: 26231517
doi: 10.1016/j.cardfail.2015.07.014
Aragón-Herrera A, Moraña-Fernández S, Otero-Santiago M, Anido-Varela L, Campos-Toimil M, García-Seara J, Román A, Seijas J, García-Caballero L, Rodríguez J, et al. The lipidomic and inflammatory profiles of visceral and subcutaneous adipose tissues are distinctly regulated by the SGLT2 inhibitor empagliflozin in Zucker diabetic fatty rats. Biomed Pharmacother. 2023;161:114535.
pubmed: 36931025
doi: 10.1016/j.biopha.2023.114535
Quagliariello V, De Laurentiis M, Rea D, Barbieri A, Monti MG, Carbone A, Paccone A, Altucci L, Conte M, Canale ML, et al. The SGLT-2 inhibitor empagliflozin improves myocardial strain, reduces cardiac fibrosis and pro-inflammatory cytokines in non-diabetic mice treated with doxorubicin. Cardiovasc Diabetol. 2021;20(1):150.
pubmed: 34301253
pmcid: 8305868
doi: 10.1186/s12933-021-01346-y
Sato T, Aizawa Y, Yuasa S, Kishi S, Fuse K, Fujita S, Ikeda Y, Kitazawa H, Takahashi M, Sato M, et al. The effect of dapagliflozin treatment on epicardial adipose tissue volume. Cardiovasc Diabetol. 2018;17(1):6.
pubmed: 29301516
pmcid: 5753537
doi: 10.1186/s12933-017-0658-8
Wang D, Liu J, Zhong L, Li S, Zhou L, Zhang Q, Li M, Xiao X. The effect of sodium-glucose cotransporter 2 inhibitors on biomarkers of inflammation: a systematic review and meta-analysis of randomized controlled trials. Front Pharmacol. 2022;13:1045235.
pubmed: 36467062
pmcid: 9717685
doi: 10.3389/fphar.2022.1045235
Gurses KM, Ozmen F, Kocyigit D, Yersal N, Bilgic E, Kaya E, Kopru CZ, Soyal T, Doganci S, Tokgozoglu L, et al. Netrin-1 is associated with macrophage infiltration and polarization in human epicardial adipose tissue in coronary artery disease. J Cardiol. 2017;69(6):851–8.
pubmed: 27727089
doi: 10.1016/j.jjcc.2016.08.016
Hirata Y, Tabata M, Kurobe H, Motoki T, Akaike M, Nishio C, Higashida M, Mikasa H, Nakaya Y, Takanashi S, et al. Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol. 2011;58(3):248–55.
pubmed: 21737014
doi: 10.1016/j.jacc.2011.01.048
Patel VB, Mori J, McLean BA, Basu R, Das SK, Ramprasath T, Parajuli N, Penninger JM, Grant MB, Lopaschuk GD, et al. ACE2 Deficiency worsens epicardial adipose tissue inflammation and cardiac dysfunction in response to diet-induced obesity. Diabetes. 2016;65(1):85–95.
pubmed: 26224885
doi: 10.2337/db15-0399
Xu L, Nagata N, Nagashimada M, Zhuge F, Ni Y, Chen G, Mayoux E, Kaneko S, Ota T. SGLT2 inhibition by empagliflozin promotes fat utilization and browning and attenuates inflammation and insulin resistance by polarizing M2 macrophages in diet-induced obese mice. EBioMedicine. 2017;20:137–49.
pubmed: 28579299
pmcid: 5478253
doi: 10.1016/j.ebiom.2017.05.028
Mori Y, Terasaki M, Hiromura M, Saito T, Kushima H, Koshibu M, Osaka N, Ohara M, Fukui T, Ohtaki H, et al. Luseogliflozin attenuates neointimal hyperplasia after wire injury in high-fat diet-fed mice via inhibition of perivascular adipose tissue remodeling. Cardiovasc Diabetol. 2019;18(1):143.
pubmed: 31672147
pmcid: 6823953
doi: 10.1186/s12933-019-0947-5
Lee TM, Chang NC, Lin SZ. Dapagliflozin, a selective SGLT2 inhibitor, attenuated cardiac fibrosis by regulating the macrophage polarization via STAT3 signaling in infarcted rat hearts. Free Radic Biol Med. 2017;104:298–310.
pubmed: 28132924
doi: 10.1016/j.freeradbiomed.2017.01.035
Sardu C, Trotta MC, Sasso FC, Sacra C, Carpinella G, Mauro C, Minicucci F, Calabro P, F DA. SGLT2-inhibitors effects on the coronary fibrous cap thickness and MACEs in diabetic patients with inducible myocardial ischemia and multi vessels non-obstructive coronary artery stenosis. Cardiovasc Diabetol. 2023;22(1):80.
pubmed: 37005586
pmcid: 10067292
doi: 10.1186/s12933-023-01814-7
Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med. 2009;15(8):914–20.
pubmed: 19633658
doi: 10.1038/nm.1964
Zhang XZ, Chen XL, Tang TT, Zhang S, Li QL, Xia N, Nie SF, Zhang M, Zhu ZF, Zhou ZH, et al. T lymphocyte characteristics and immune repertoires in the epicardial adipose tissue of heart failure patients. Front Immunol. 2023;14:1126997.
pubmed: 36960061
pmcid: 10027920
doi: 10.3389/fimmu.2023.1126997
Tomášová P, Čermáková M, Pelantová H, Vecka M, Kratochvílová H, Lipš M, Lindner J, Šedivá B, Haluzík M, Kuzma M. Minor lipids profiling in subcutaneous and epicardial fat tissue using LC/MS with an optimized preanalytical phase. J Chromatogr B. 2019;1113:50–9.
doi: 10.1016/j.jchromb.2019.03.006
Barchuk M, Dutour A, Ancel P, Svilar L, Miksztowicz V, Lopez G, Rubio M, Schreier L, Nogueira JP, Valéro R, et al. Untargeted lipidomics reveals a specific enrichment in plasmalogens in epicardial adipose tissue and a specific signature in coronary artery disease. Arterioscler Thromb Vasc Biol. 2020;40(4):986–1000.
pubmed: 32102570
doi: 10.1161/ATVBAHA.120.313955
Barchuk M, Ancel P, Miksztowicz V, Doukbi E, Svilar L, Yñón D, Nogueira JP, Rubio M, Schreier L, Dutour A, et al. Epicardial adipose tissue ceramides are related to lipoprotein lipase activity in coronary artery disease: unfolding a missing link. Arterioscler Thromb Vasc Biol. 2022;42(8):e242–51.
pubmed: 35708030
doi: 10.1161/ATVBAHA.122.317840
Janovska P, Melenovsky V, Svobodova M, Havlenova T, Kratochvilova H, Haluzik M, Hoskova E, Pelikanova T, Kautzner J, Monzo L, et al. Dysregulation of epicardial adipose tissue in cachexia due to heart failure: the role of natriuretic peptides and cardiolipin. J Cachexia Sarcopenia Muscle. 2020;11(6):1614–27.
pubmed: 33084249
pmcid: 7749591
doi: 10.1002/jcsm.12631
Skotland T, Sandvig K. The role of PS 18:0/18:1 in membrane function. Nat Commun. 2019;10(1):2752.
pubmed: 31227693
pmcid: 6588574
doi: 10.1038/s41467-019-10711-1
Miao R, Fang X, Zhang Y, Wei J, Zhang Y, Tian J. Iron metabolism and ferroptosis in type 2 diabetes mellitus and complications: mechanisms and therapeutic opportunities. Cell Death Dis. 2023;14(3):186.
pubmed: 36882414
pmcid: 9992652
doi: 10.1038/s41419-023-05708-0
von Krusenstiern AN, Robson RN, Qian N, Qiu B, Hu F, Reznik E, Smith N, Zandkarimi F, Estes VM, Dupont M, et al. Identification of essential sites of lipid peroxidation in ferroptosis. Nat Chem Biol. 2023;19(6):719–30.
doi: 10.1038/s41589-022-01249-3
Florean C, Song S, Dicato M, Diederich M. Redox biology of regulated cell death in cancer: a focus on necroptosis and ferroptosis. Free Radic Biol Med. 2019;134:177–89.
pubmed: 30639617
doi: 10.1016/j.freeradbiomed.2019.01.008
Kong H, Reczek CR, McElroy GS, Steinert EM, Wang T, Sabatini DM, Chandel NS. Metabolic determinants of cellular fitness dependent on mitochondrial reactive oxygen species. Sci Adv. 2020;6(45):eabb7272.
pubmed: 33148642
pmcid: 7673681
doi: 10.1126/sciadv.abb7272
Chiu CF, Saidi WA, Kagan VE, Star A. Defect-Induced near-infrared photoluminescence of single-walled carbon nanotubes treated with polyunsaturated fatty acids. J Am Chem Soc. 2017;139(13):4859–65.
pubmed: 28288512
pmcid: 6540762
doi: 10.1021/jacs.7b00390
Gao M, Monian P, Quadri N, Ramasamy R, Jiang X. Glutaminolysis and transferrin regulate ferroptosis. Mol Cell. 2015;59(2):298–308.
pubmed: 26166707
pmcid: 4506736
doi: 10.1016/j.molcel.2015.06.011
El Hout M, Dos Santos L, Hamai A, Mehrpour M. A promising new approach to cancer therapy: targeting iron metabolism in cancer stem cells. Semin Cancer Biol. 2018;53:125–38.
pubmed: 30071257
doi: 10.1016/j.semcancer.2018.07.009
Feng H, Schorpp K, Jin J, Yozwiak CE, Hoffstrom BG, Decker AM, Rajbhandari P, Stokes ME, Bender HG, Csuka JM, et al. Transferrin receptor is a specific ferroptosis marker. Cell Rep. 2020;30(10):3411–e34233417.
pubmed: 32160546
pmcid: 7172030
doi: 10.1016/j.celrep.2020.02.049
Miao W, Chen M, Chen M, Cui C, Zhu Y, Luo X, Wu B. Nr2f2 overexpression aggravates ferroptosis and mitochondrial dysfunction by regulating the PGC-1α signaling in diabetes-induced heart failure mice. Mediat Inflamm. 2022;2022:8373389.
doi: 10.1155/2022/8373389
Sahebkar A, Foroutan Z, Katsiki N, Jamialahmadi T, Mantzoros CS. Ferroptosis, a new pathogenetic mechanism in cardiometabolic diseases and cancer: Is there a role for statin therapy? Metab Clin Exp. 2023;146:155659.
pubmed: 37442270
doi: 10.1016/j.metabol.2023.155659
Fratta Pasini AM, Stranieri C, Busti F, Di Leo EG, Girelli D, Cominacini L. New insights into the role of ferroptosis in cardiovascular diseases. Cells. 2023;12(6):867.
pubmed: 36980208
pmcid: 10047059
doi: 10.3390/cells12060867
Chen W, Zhang Y, Wang Z, Tan M, Lin J, Qian X, Li H, Jiang T. Dapagliflozin alleviates myocardial ischemia/reperfusion injury by reducing ferroptosis via MAPK signaling inhibition. Front Pharmacol. 2023;14:1078205.
pubmed: 36891270
pmcid: 9986553
doi: 10.3389/fphar.2023.1078205