Molecular profiling of 888 pediatric tumors informs future precision trials and data-sharing initiatives in pediatric cancer.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 Jul 2024
11 Jul 2024
Historique:
received:
28
10
2023
accepted:
18
06
2024
medline:
12
7
2024
pubmed:
12
7
2024
entrez:
11
7
2024
Statut:
epublish
Résumé
To inform clinical trial design and real-world precision pediatric oncology practice, we classified diagnoses, assessed the landscape of mutations, and identified genomic variants matching trials in a large unselected institutional cohort of solid tumors patients sequenced at Dana-Farber / Boston Children's Cancer and Blood Disorders Center. Tumors were sequenced with OncoPanel, a targeted next-generation DNA sequencing panel. Diagnoses were classified according to the International Classification of Diseases for Oncology (ICD-O-3.2). Over 6.5 years, 888 pediatric cancer patients with 95 distinct diagnoses had successful tumor sequencing. Overall, 33% (n = 289/888) of patients had at least 1 variant matching a precision oncology trial protocol, and 14% (41/289) were treated with molecularly targeted therapy. This study highlights opportunities to use genomic data from hospital-based sequencing performed either for research or clinical care to inform ongoing and future precision oncology clinical trials. Furthermore, the study results emphasize the importance of data sharing to define the genomic landscape and targeted treatment opportunities for the large group of rare pediatric cancers we encounter in clinical practice.
Identifiants
pubmed: 38992034
doi: 10.1038/s41467-024-49944-0
pii: 10.1038/s41467-024-49944-0
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
5837Informations de copyright
© 2024. The Author(s).
Références
Siegel, D. A. et al. Pediatric cancer mortality and survival in the United States, 2001-2016. Cancer 126, 4379–4389 (2020).
pubmed: 32725630
doi: 10.1002/cncr.33080
Smith, M. A., Altekruse, S. F., Adamson, P. C., Reaman, G. H. & Seibel, N. L. Declining childhood and adolescent cancer mortality. Cancer 120, 2497–2506 (2014).
pubmed: 24853691
doi: 10.1002/cncr.28748
Cunningham, R. M., Walton, M. A. & Carter, P. M. The major causes of death in children and adolescents in the United States. N. Engl. J. Med. 379, 2468–2475 (2018).
pubmed: 30575483
pmcid: 6637963
doi: 10.1056/NEJMsr1804754
Bhakta, N. et al. The cumulative burden of surviving childhood cancer: an initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet 390, 2569–2582 (2017).
pubmed: 28890157
pmcid: 5798235
doi: 10.1016/S0140-6736(17)31610-0
Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).
pubmed: 33433946
doi: 10.3322/caac.21654
Suh, E. et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: a retrospective cohort analysis from the Childhood Cancer Survivor Study. Lancet Oncol. 21, 421–435 (2020).
pubmed: 32066543
pmcid: 7392388
doi: 10.1016/S1470-2045(19)30800-9
Tran, T. H., Shah, A. T. & Loh, M. L. Precision medicine in pediatric oncology: translating genomic discoveries into optimized therapies. Clin. Cancer Res. 23, 5329–5338 (2017).
pubmed: 28600472
doi: 10.1158/1078-0432.CCR-16-0115
Pui, C. H. et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J. Clin. Oncol. 33, 2938–2948 (2015).
pubmed: 26304874
pmcid: 4567699
doi: 10.1200/JCO.2014.59.1636
Liang, W. H. et al. Tailoring therapy for children with neuroblastoma on the basis of risk group classification: past, present, and future. JCO Clin. Cancer Inf. 4, 895–905 (2020).
doi: 10.1200/CCI.20.00074
Gajjar, A. et al. Outcomes by clinical and molecular features in children with medulloblastoma treated with risk-adapted therapy: results of an international phase III trial (SJMB03). J. Clin. Oncol. 39, 822–835 (2021).
pubmed: 33405951
pmcid: 10166353
doi: 10.1200/JCO.20.01372
NCCR*Explorer: An interactive website for NCCR cancer statistics [Internet]. National Cancer Institute; 2021 Nov 8. [updated: 2021 Nov 8; cited 2022 Nov 21]. Available from: https://nccrexplorer.ccdi.cancer.gov .
Sholl, L. M. et al. Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight 1, e87062 (2016).
pubmed: 27882345
pmcid: 5111542
doi: 10.1172/jci.insight.87062
Flores-Toro, J. A. et al. The childhood cancer data initiative: using the power of data to learn from and improve outcomes for every child and young adult with pediatric cancer. J. Clin. Oncol. 41, https://doi.org/10.1200/JCO.22.02208 (2023).
Plana, A. et al. Pediatric cancer data commons: federating and democratizing data for childhood cancer research. JCO Clin. Cancer Inf. 5, 1034–1043 (2021).
doi: 10.1200/CCI.21.00075
Harris, M. H. et al. Multicenter feasibility study of tumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: The individualized cancer therapy (iCat) study. JAMA Oncol. 2, 608–615 (2016).
pubmed: 26822149
doi: 10.1001/jamaoncol.2015.5689
Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).
pubmed: 29489755
pmcid: 5854542
doi: 10.1038/nature25795
Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).
pubmed: 29489754
doi: 10.1038/nature25480
Allen, C. E. et al. Target and agent prioritization for the children’s oncology group-national cancer institute pediatric MATCH trial. J. Natl. Cancer Inst. 109, https://doi.org/10.1093/jnci/djw274 (2017).
Murciano-Goroff, Y. R., Drilon, A. & Stadler, Z. K. The NCI-MATCH: A national, collaborative precision oncology trial for diverse tumor histologies. Cancer Cell 39, 22–24 (2021).
pubmed: 33434511
pmcid: 10640715
doi: 10.1016/j.ccell.2020.12.021
Mangat, P. K. et al. Rationale and design of the targeted agent and profiling utilization registry (TAPUR) study. JCO Precis. Oncol. 2, https://doi.org/10.1200/PO.18.00122 (2018).
Choudhury, N. J. et al. The GENIE BPC NSCLC cohort: a real-world repository integrating standardized clinical and genomic data for 1,846 patients with non-small cell lung cancer. Clin. Cancer Res. 29, 3418–3428 (2023).
Harris, P. A. et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inf. 95, 103208 (2019).
doi: 10.1016/j.jbi.2019.103208
Harris, P. A. et al. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 42, 377–381 (2009).
doi: 10.1016/j.jbi.2008.08.010
Gupta, S. et al. Paediatric cancer stage in population-based cancer registries: the Toronto consensus principles and guidelines. Lancet Oncol. 17, e163–e172 (2016).
pubmed: 27300676
doi: 10.1016/S1470-2045(15)00539-2
Pugh, T. J. et al. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 45, 279–284 (2013).
pubmed: 23334666
pmcid: 3682833
doi: 10.1038/ng.2529
Gadd, S. et al. A children’s oncology group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat. Genet. 49, 1487–1494 (2017).
pubmed: 28825729
pmcid: 5712232
doi: 10.1038/ng.3940
Bolouri, H. et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 24, 103–112 (2018).
pubmed: 29227476
doi: 10.1038/nm.4439
Brady, S. W. et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat. Genet. 54, 1376–1389 (2022).
pubmed: 36050548
pmcid: 9700506
doi: 10.1038/s41588-022-01159-z
Newman, S. et al. Genomes for kids: the scope of pathogenic mutations in pediatric cancer revealed by comprehensive DNA and RNA sequencing. Cancer Discov. 11, 3008–3027 (2021).
pubmed: 34301788
pmcid: 8783930
doi: 10.1158/2159-8290.CD-20-1631
Parsons, D. W. et al. Actionable tumor alterations and treatment protocol enrollment of pediatric and young adult patients with refractory cancers in the national cancer institute-children’s oncology group pediatric MATCH trial. J. Clin. Oncol. 40, 2224–2234 (2022).
pubmed: 35353553
pmcid: 9273376
doi: 10.1200/JCO.21.02838
Parsons, D. W. et al. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2, 616–624 (2016).
pubmed: 26822237
pmcid: 5471125
doi: 10.1001/jamaoncol.2015.5699
Berlanga, P. et al. The european MAPPYACTS trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov. 12, 1266–1281 (2022).
pubmed: 35292802
pmcid: 9394403
doi: 10.1158/2159-8290.CD-21-1136
Pinches, R. S. et al. Making the most of small samples: Optimization of tissue allocation of pediatric solid tumors for clinical and research use. Pediatr. Blood Cancer 67, e28326 (2020).
pubmed: 32667141
doi: 10.1002/pbc.28326
RACE Act poised to advance pediatric cancer research. Cancer Discov. 10, 1434–434 (2020).
Pearson, A. D. et al. Implementation of mechanism of action biology-driven early drug development for children with cancer. Eur. J. Cancer 62, 124–131 (2016).
pubmed: 27258969
doi: 10.1016/j.ejca.2016.04.001
O’Rourke, K. NCI launches the molecular characterization initiative for pediatric tumors. Cancer 128, 3012 (2022).
pubmed: 35860918
doi: 10.1002/cncr.34381
van Tilburg, C. M. et al. The pediatric precision oncology INFORM registry: clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov. 11, 2764–2779 (2021).
pubmed: 34373263
pmcid: 9414287
doi: 10.1158/2159-8290.CD-21-0094
Trotman, J. et al. The NHS England 100,000 genomes project: feasibility and utility of centralised genome sequencing for children with cancer. Br. J. Cancer 127, 137–144 (2022).
pubmed: 35449451
pmcid: 9276782
doi: 10.1038/s41416-022-01788-5
Ettinger, D. S. et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 20, 497–530 (2022).
pubmed: 35545176
doi: 10.6004/jnccn.2022.0025
FDA Fact Sheet: CDRH’S Approach to Tumor Profiling Next Generation Sequencing Tests (US Food & Drug Administration, accessed December 22). https://www.fda.gov/media/109050/download (2023).
CMS to cover NGS companion diagnostics. Cancer Discov 8, 522 (2018).
Gajjar, A. et al. Pediatric central nervous system cancers, version 2.2023, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 20, 1339–1362 (2022).
pubmed: 36509072
Balis, F. et al. Wilms tumor (Nephroblastoma), version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc Netw. 19, 945–977 (2021).
pubmed: 34416707
doi: 10.6004/jnccn.2021.0037
Church, A. J. et al. Molecular profiling identifies targeted therapy opportunities in pediatric solid cancer. Nat. Med. 28, 1581–1589 (2022).
Schienda, J. et al. Germline sequencing improves tumor-only sequencing interpretation in a precision genomic study of patients with pediatric solid tumor. JCO Precis. Oncol. 5, https://doi.org/10.1200/PO.21.00281 (2021).
Steliarova-Foucher, E., Stiller, C., Lacour, B. & Kaatsch, P. International classification of childhood cancer, third edition. Cancer 103, 1457–1467 (2005).
pubmed: 15712273
doi: 10.1002/cncr.20910
Gupta, S. et al. Development of paediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 toronto paediatric cancer stage guidelines. Lancet Oncol. 21, e444–e451 (2020).
pubmed: 32888473
doi: 10.1016/S1470-2045(20)30320-X
Garcia, E. P. et al. Validation of oncoPanel: A targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch. Pathol. Lab. Med. 141, 751–758 (2017).
pubmed: 28557599
doi: 10.5858/arpa.2016-0527-OA
Abo, R. P. et al. BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers. Nucleic Acids Res. 43, e19 (2015).
pubmed: 25428359
doi: 10.1093/nar/gku1211
Nowak, J. A. et al. Detection of mismatch repair deficiency and microsatellite instability in colorectal adenocarcinoma by targeted next-generation sequencing. J. Mol. Diagn. 19, 84–91 (2017).
pubmed: 27863258
pmcid: 5225299
doi: 10.1016/j.jmoldx.2016.07.010
Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).
pubmed: 29165669
doi: 10.1093/nar/gkx1153
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654
pmcid: 7334197
doi: 10.1038/s41586-020-2308-7
Chakravarty, D. et al. OncoKB: A precision oncology knowledge base. JCO Precis. Oncol. 1, https://doi.org/10.1200/PO.17.00011 (2017).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 32, 2847–2849 (2016).
pubmed: 27207943
doi: 10.1093/bioinformatics/btw313
Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26, 1742–1753 (2020).
pubmed: 33020650
doi: 10.1038/s41591-020-1072-4