Molecular profiling of 888 pediatric tumors informs future precision trials and data-sharing initiatives in pediatric cancer.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 Jul 2024
Historique:
received: 28 10 2023
accepted: 18 06 2024
medline: 12 7 2024
pubmed: 12 7 2024
entrez: 11 7 2024
Statut: epublish

Résumé

To inform clinical trial design and real-world precision pediatric oncology practice, we classified diagnoses, assessed the landscape of mutations, and identified genomic variants matching trials in a large unselected institutional cohort of solid tumors patients sequenced at Dana-Farber / Boston Children's Cancer and Blood Disorders Center. Tumors were sequenced with OncoPanel, a targeted next-generation DNA sequencing panel. Diagnoses were classified according to the International Classification of Diseases for Oncology (ICD-O-3.2). Over 6.5 years, 888 pediatric cancer patients with 95 distinct diagnoses had successful tumor sequencing. Overall, 33% (n = 289/888) of patients had at least 1 variant matching a precision oncology trial protocol, and 14% (41/289) were treated with molecularly targeted therapy. This study highlights opportunities to use genomic data from hospital-based sequencing performed either for research or clinical care to inform ongoing and future precision oncology clinical trials. Furthermore, the study results emphasize the importance of data sharing to define the genomic landscape and targeted treatment opportunities for the large group of rare pediatric cancers we encounter in clinical practice.

Identifiants

pubmed: 38992034
doi: 10.1038/s41467-024-49944-0
pii: 10.1038/s41467-024-49944-0
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

5837

Informations de copyright

© 2024. The Author(s).

Références

Siegel, D. A. et al. Pediatric cancer mortality and survival in the United States, 2001-2016. Cancer 126, 4379–4389 (2020).
pubmed: 32725630 doi: 10.1002/cncr.33080
Smith, M. A., Altekruse, S. F., Adamson, P. C., Reaman, G. H. & Seibel, N. L. Declining childhood and adolescent cancer mortality. Cancer 120, 2497–2506 (2014).
pubmed: 24853691 doi: 10.1002/cncr.28748
Cunningham, R. M., Walton, M. A. & Carter, P. M. The major causes of death in children and adolescents in the United States. N. Engl. J. Med. 379, 2468–2475 (2018).
pubmed: 30575483 pmcid: 6637963 doi: 10.1056/NEJMsr1804754
Bhakta, N. et al. The cumulative burden of surviving childhood cancer: an initial report from the St Jude Lifetime Cohort Study (SJLIFE). Lancet 390, 2569–2582 (2017).
pubmed: 28890157 pmcid: 5798235 doi: 10.1016/S0140-6736(17)31610-0
Siegel, R. L., Miller, K. D., Fuchs, H. E. & Jemal, A. Cancer Statistics, 2021. CA Cancer J. Clin. 71, 7–33 (2021).
pubmed: 33433946 doi: 10.3322/caac.21654
Suh, E. et al. Late mortality and chronic health conditions in long-term survivors of early-adolescent and young adult cancers: a retrospective cohort analysis from the Childhood Cancer Survivor Study. Lancet Oncol. 21, 421–435 (2020).
pubmed: 32066543 pmcid: 7392388 doi: 10.1016/S1470-2045(19)30800-9
Tran, T. H., Shah, A. T. & Loh, M. L. Precision medicine in pediatric oncology: translating genomic discoveries into optimized therapies. Clin. Cancer Res. 23, 5329–5338 (2017).
pubmed: 28600472 doi: 10.1158/1078-0432.CCR-16-0115
Pui, C. H. et al. Childhood acute lymphoblastic leukemia: progress through collaboration. J. Clin. Oncol. 33, 2938–2948 (2015).
pubmed: 26304874 pmcid: 4567699 doi: 10.1200/JCO.2014.59.1636
Liang, W. H. et al. Tailoring therapy for children with neuroblastoma on the basis of risk group classification: past, present, and future. JCO Clin. Cancer Inf. 4, 895–905 (2020).
doi: 10.1200/CCI.20.00074
Gajjar, A. et al. Outcomes by clinical and molecular features in children with medulloblastoma treated with risk-adapted therapy: results of an international phase III trial (SJMB03). J. Clin. Oncol. 39, 822–835 (2021).
pubmed: 33405951 pmcid: 10166353 doi: 10.1200/JCO.20.01372
NCCR*Explorer: An interactive website for NCCR cancer statistics [Internet]. National Cancer Institute; 2021 Nov 8. [updated: 2021 Nov 8; cited 2022 Nov 21]. Available from: https://nccrexplorer.ccdi.cancer.gov .
Sholl, L. M. et al. Institutional implementation of clinical tumor profiling on an unselected cancer population. JCI Insight 1, e87062 (2016).
pubmed: 27882345 pmcid: 5111542 doi: 10.1172/jci.insight.87062
Flores-Toro, J. A. et al. The childhood cancer data initiative: using the power of data to learn from and improve outcomes for every child and young adult with pediatric cancer. J. Clin. Oncol. 41, https://doi.org/10.1200/JCO.22.02208 (2023).
Plana, A. et al. Pediatric cancer data commons: federating and democratizing data for childhood cancer research. JCO Clin. Cancer Inf. 5, 1034–1043 (2021).
doi: 10.1200/CCI.21.00075
Harris, M. H. et al. Multicenter feasibility study of tumor molecular profiling to inform therapeutic decisions in advanced pediatric solid tumors: The individualized cancer therapy (iCat) study. JAMA Oncol. 2, 608–615 (2016).
pubmed: 26822149 doi: 10.1001/jamaoncol.2015.5689
Ma, X. et al. Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature 555, 371–376 (2018).
pubmed: 29489755 pmcid: 5854542 doi: 10.1038/nature25795
Grobner, S. N. et al. The landscape of genomic alterations across childhood cancers. Nature 555, 321–327 (2018).
pubmed: 29489754 doi: 10.1038/nature25480
Allen, C. E. et al. Target and agent prioritization for the children’s oncology group-national cancer institute pediatric MATCH trial. J. Natl. Cancer Inst. 109, https://doi.org/10.1093/jnci/djw274 (2017).
Murciano-Goroff, Y. R., Drilon, A. & Stadler, Z. K. The NCI-MATCH: A national, collaborative precision oncology trial for diverse tumor histologies. Cancer Cell 39, 22–24 (2021).
pubmed: 33434511 pmcid: 10640715 doi: 10.1016/j.ccell.2020.12.021
Mangat, P. K. et al. Rationale and design of the targeted agent and profiling utilization registry (TAPUR) study. JCO Precis. Oncol. 2, https://doi.org/10.1200/PO.18.00122 (2018).
Choudhury, N. J. et al. The GENIE BPC NSCLC cohort: a real-world repository integrating standardized clinical and genomic data for 1,846 patients with non-small cell lung cancer. Clin. Cancer Res. 29, 3418–3428 (2023).
Harris, P. A. et al. The REDCap consortium: Building an international community of software platform partners. J. Biomed. Inf. 95, 103208 (2019).
doi: 10.1016/j.jbi.2019.103208
Harris, P. A. et al. Research electronic data capture (REDCap)–a metadata-driven methodology and workflow process for providing translational research informatics support. J. Biomed. Inf. 42, 377–381 (2009).
doi: 10.1016/j.jbi.2008.08.010
Gupta, S. et al. Paediatric cancer stage in population-based cancer registries: the Toronto consensus principles and guidelines. Lancet Oncol. 17, e163–e172 (2016).
pubmed: 27300676 doi: 10.1016/S1470-2045(15)00539-2
Pugh, T. J. et al. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 45, 279–284 (2013).
pubmed: 23334666 pmcid: 3682833 doi: 10.1038/ng.2529
Gadd, S. et al. A children’s oncology group and TARGET initiative exploring the genetic landscape of Wilms tumor. Nat. Genet. 49, 1487–1494 (2017).
pubmed: 28825729 pmcid: 5712232 doi: 10.1038/ng.3940
Bolouri, H. et al. The molecular landscape of pediatric acute myeloid leukemia reveals recurrent structural alterations and age-specific mutational interactions. Nat. Med. 24, 103–112 (2018).
pubmed: 29227476 doi: 10.1038/nm.4439
Brady, S. W. et al. The genomic landscape of pediatric acute lymphoblastic leukemia. Nat. Genet. 54, 1376–1389 (2022).
pubmed: 36050548 pmcid: 9700506 doi: 10.1038/s41588-022-01159-z
Newman, S. et al. Genomes for kids: the scope of pathogenic mutations in pediatric cancer revealed by comprehensive DNA and RNA sequencing. Cancer Discov. 11, 3008–3027 (2021).
pubmed: 34301788 pmcid: 8783930 doi: 10.1158/2159-8290.CD-20-1631
Parsons, D. W. et al. Actionable tumor alterations and treatment protocol enrollment of pediatric and young adult patients with refractory cancers in the national cancer institute-children’s oncology group pediatric MATCH trial. J. Clin. Oncol. 40, 2224–2234 (2022).
pubmed: 35353553 pmcid: 9273376 doi: 10.1200/JCO.21.02838
Parsons, D. W. et al. Diagnostic yield of clinical tumor and germline whole-exome sequencing for children with solid tumors. JAMA Oncol. 2, 616–624 (2016).
pubmed: 26822237 pmcid: 5471125 doi: 10.1001/jamaoncol.2015.5699
Berlanga, P. et al. The european MAPPYACTS trial: precision medicine program in pediatric and adolescent patients with recurrent malignancies. Cancer Discov. 12, 1266–1281 (2022).
pubmed: 35292802 pmcid: 9394403 doi: 10.1158/2159-8290.CD-21-1136
Pinches, R. S. et al. Making the most of small samples: Optimization of tissue allocation of pediatric solid tumors for clinical and research use. Pediatr. Blood Cancer 67, e28326 (2020).
pubmed: 32667141 doi: 10.1002/pbc.28326
RACE Act poised to advance pediatric cancer research. Cancer Discov. 10, 1434–434 (2020).
Pearson, A. D. et al. Implementation of mechanism of action biology-driven early drug development for children with cancer. Eur. J. Cancer 62, 124–131 (2016).
pubmed: 27258969 doi: 10.1016/j.ejca.2016.04.001
O’Rourke, K. NCI launches the molecular characterization initiative for pediatric tumors. Cancer 128, 3012 (2022).
pubmed: 35860918 doi: 10.1002/cncr.34381
van Tilburg, C. M. et al. The pediatric precision oncology INFORM registry: clinical outcome and benefit for patients with very high-evidence targets. Cancer Discov. 11, 2764–2779 (2021).
pubmed: 34373263 pmcid: 9414287 doi: 10.1158/2159-8290.CD-21-0094
Trotman, J. et al. The NHS England 100,000 genomes project: feasibility and utility of centralised genome sequencing for children with cancer. Br. J. Cancer 127, 137–144 (2022).
pubmed: 35449451 pmcid: 9276782 doi: 10.1038/s41416-022-01788-5
Ettinger, D. S. et al. Non-small cell lung cancer, version 3.2022, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 20, 497–530 (2022).
pubmed: 35545176 doi: 10.6004/jnccn.2022.0025
FDA Fact Sheet: CDRH’S Approach to Tumor Profiling Next Generation Sequencing Tests (US Food & Drug Administration, accessed December 22). https://www.fda.gov/media/109050/download (2023).
CMS to cover NGS companion diagnostics. Cancer Discov 8, 522 (2018).
Gajjar, A. et al. Pediatric central nervous system cancers, version 2.2023, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc. Netw. 20, 1339–1362 (2022).
pubmed: 36509072
Balis, F. et al. Wilms tumor (Nephroblastoma), version 2.2021, NCCN clinical practice guidelines in oncology. J. Natl. Compr. Canc Netw. 19, 945–977 (2021).
pubmed: 34416707 doi: 10.6004/jnccn.2021.0037
Church, A. J. et al. Molecular profiling identifies targeted therapy opportunities in pediatric solid cancer. Nat. Med. 28, 1581–1589 (2022).
Schienda, J. et al. Germline sequencing improves tumor-only sequencing interpretation in a precision genomic study of patients with pediatric solid tumor. JCO Precis. Oncol. 5, https://doi.org/10.1200/PO.21.00281 (2021).
Steliarova-Foucher, E., Stiller, C., Lacour, B. & Kaatsch, P. International classification of childhood cancer, third edition. Cancer 103, 1457–1467 (2005).
pubmed: 15712273 doi: 10.1002/cncr.20910
Gupta, S. et al. Development of paediatric non-stage prognosticator guidelines for population-based cancer registries and updates to the 2014 toronto paediatric cancer stage guidelines. Lancet Oncol. 21, e444–e451 (2020).
pubmed: 32888473 doi: 10.1016/S1470-2045(20)30320-X
Garcia, E. P. et al. Validation of oncoPanel: A targeted next-generation sequencing assay for the detection of somatic variants in cancer. Arch. Pathol. Lab. Med. 141, 751–758 (2017).
pubmed: 28557599 doi: 10.5858/arpa.2016-0527-OA
Abo, R. P. et al. BreaKmer: detection of structural variation in targeted massively parallel sequencing data using kmers. Nucleic Acids Res. 43, e19 (2015).
pubmed: 25428359 doi: 10.1093/nar/gku1211
Nowak, J. A. et al. Detection of mismatch repair deficiency and microsatellite instability in colorectal adenocarcinoma by targeted next-generation sequencing. J. Mol. Diagn. 19, 84–91 (2017).
pubmed: 27863258 pmcid: 5225299 doi: 10.1016/j.jmoldx.2016.07.010
Landrum, M. J. et al. ClinVar: improving access to variant interpretations and supporting evidence. Nucleic Acids Res. 46, D1062–D1067 (2018).
pubmed: 29165669 doi: 10.1093/nar/gkx1153
Karczewski, K. J. et al. The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 581, 434–443 (2020).
pubmed: 32461654 pmcid: 7334197 doi: 10.1038/s41586-020-2308-7
Chakravarty, D. et al. OncoKB: A precision oncology knowledge base. JCO Precis. Oncol. 1, https://doi.org/10.1200/PO.17.00011 (2017).
Gu, Z., Eils, R. & Schlesner, M. Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics. 32, 2847–2849 (2016).
pubmed: 27207943 doi: 10.1093/bioinformatics/btw313
Wong, M. et al. Whole genome, transcriptome and methylome profiling enhances actionable target discovery in high-risk pediatric cancer. Nat. Med. 26, 1742–1753 (2020).
pubmed: 33020650 doi: 10.1038/s41591-020-1072-4

Auteurs

Suzanne J Forrest (SJ)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA. Suzanne_Forrest@dfci.harvard.edu.
Harvard Medical School, Boston, MA, USA. Suzanne_Forrest@dfci.harvard.edu.

Hersh Gupta (H)

Dana-Farber Cancer Institute, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Abigail Ward (A)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.

Yvonne Y Li (YY)

Dana-Farber Cancer Institute, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Duong Doan (D)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.

Alyaa Al-Ibraheemi (A)

Harvard Medical School, Boston, MA, USA.
Boston Children's Hospital, Boston, MA, USA.

Sanda Alexandrescu (S)

Harvard Medical School, Boston, MA, USA.
Boston Children's Hospital, Boston, MA, USA.

Pratiti Bandopadhayay (P)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.

Suzanne Shusterman (S)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.

Elizabeth A Mullen (EA)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.

Natalie B Collins (NB)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.

Susan N Chi (SN)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.

Karen D Wright (KD)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
Harvard Medical School, Boston, MA, USA.

Priti Kumari (P)

Dana-Farber Cancer Institute, Boston, MA, USA.

Tali Mazor (T)

Dana-Farber Cancer Institute, Boston, MA, USA.

Keith L Ligon (KL)

Harvard Medical School, Boston, MA, USA.
Dana-Farber Cancer Institute, Boston, MA, USA.
Boston Children's Hospital, Boston, MA, USA.
Brigham and Women's Hospital, Boston, MA, USA.

Priyanka Shivdasani (P)

Brigham and Women's Hospital, Boston, MA, USA.

Monica Manam (M)

Boston Children's Hospital, Boston, MA, USA.

Laura E MacConaill (LE)

Brigham and Women's Hospital, Boston, MA, USA.

Evelina Ceca (E)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.

Sidney N Benich (SN)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.

Wendy B London (WB)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.

Richard L Schilsky (RL)

American Society of Clinical Oncology, Alexandria, VA, USA.

Suanna S Bruinooge (SS)

American Society of Clinical Oncology, Alexandria, VA, USA.

Jaime M Guidry Auvil (JM)

National Cancer Institute, Bethesda, MD, USA.

Ethan Cerami (E)

Dana-Farber Cancer Institute, Boston, MA, USA.

Barrett J Rollins (BJ)

Harvard Medical School, Boston, MA, USA.
Dana-Farber Cancer Institute, Boston, MA, USA.
Brigham and Women's Hospital, Boston, MA, USA.

Matthew L Meyerson (ML)

Harvard Medical School, Boston, MA, USA.
Dana-Farber Cancer Institute, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Neal I Lindeman (NI)

Weill Cornell Medical College, New York, NY, USA.

Bruce E Johnson (BE)

Harvard Medical School, Boston, MA, USA.
Dana-Farber Cancer Institute, Boston, MA, USA.
Brigham and Women's Hospital, Boston, MA, USA.

Andrew D Cherniak (AD)

Dana-Farber Cancer Institute, Boston, MA, USA.
Broad Institute of MIT and Harvard, Cambridge, MA, USA.

Alanna J Church (AJ)

Harvard Medical School, Boston, MA, USA.
Boston Children's Hospital, Boston, MA, USA.

Katherine A Janeway (KA)

Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA. Katherine_Janeway@dfci.harvard.edu.
Harvard Medical School, Boston, MA, USA. Katherine_Janeway@dfci.harvard.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH