A whole-cell platform for discovering synthetic cell adhesion molecules in bacteria.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
03 Aug 2024
Historique:
received: 14 12 2023
accepted: 26 07 2024
medline: 3 8 2024
pubmed: 3 8 2024
entrez: 2 8 2024
Statut: epublish

Résumé

Developing programmable bacterial cell-cell adhesion is of significant interest due to its versatile applications. Current methods that rely on presenting cell adhesion molecules (CAMs) on bacterial surfaces are limited by the lack of a generalizable strategy to identify such molecules targeting bacterial membrane proteins in their natural states. Here, we introduce a whole-cell screening platform designed to discover CAMs targeting bacterial membrane proteins within a synthetic bacteria-displayed nanobody library. Leveraging the potency of the bacterial type IV secretion system-a contact-dependent DNA delivery nanomachine-we have established a positive feedback mechanism to selectively enrich for bacteria displaying nanobodies that target antigen-expressing cells. Our platform successfully identified functional CAMs capable of recognizing three distinct outer membrane proteins (TraN, OmpA, OmpC), demonstrating its efficacy in CAM discovery. This approach holds promise for engineering bacterial cell-cell adhesion, such as directing the antibacterial activity of programmed inhibitor cells toward target bacteria in mixed populations.

Identifiants

pubmed: 39095377
doi: 10.1038/s41467-024-51017-1
pii: 10.1038/s41467-024-51017-1
doi:

Substances chimiques

Cell Adhesion Molecules 0
Single-Domain Antibodies 0
Bacterial Outer Membrane Proteins 0
OMPA outer membrane proteins 149024-69-1

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6568

Subventions

Organisme : Academia Sinica
ID : AS-CDA-112-L05
Organisme : Academia Sinica
ID : AS-IVA-112-L05

Informations de copyright

© 2024. The Author(s).

Références

Kim, H. et al. 4-bit adhesion logic enables universal multicellular interface patterning. Nature 608, 324–329 (2022).
pubmed: 35948712 pmcid: 9365691 doi: 10.1038/s41586-022-04944-2
Xavier, J. B. Social interaction in synthetic and natural microbial communities. Mol. Syst. Biol. 7, 483 (2011).
pubmed: 21487402 pmcid: 3101950 doi: 10.1038/msb.2011.16
Chen, B. et al. Programmable living assembly of materials by bacterial adhesion. Nat. Chem. Biol. 18, 289–294 (2022).
pubmed: 34934187 doi: 10.1038/s41589-021-00934-z
Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).
pubmed: 27452230 doi: 10.1038/nrmicro.2016.84
Chen, H. J., Peng, C. F., Tang, C. W. & Chen, Y. T. Self-healing concrete by biological substrate. Materials 12, 4099 (2019).
pubmed: 31817964 pmcid: 6947293 doi: 10.3390/ma12244099
Ting, S. Y. et al. Targeted depletion of bacteria from mixed populations by programmable adhesion with antagonistic competitor cells. Cell Host Microbe 28, 313–321 e316 (2020).
pubmed: 32470328 pmcid: 7725374 doi: 10.1016/j.chom.2020.05.006
Robledo, M. et al. Targeted bacterial conjugation mediated by synthetic cell-to-cell adhesions. Nucleic Acids Res. 50, 12938–12950 (2022).
pubmed: 36511856 pmcid: 9825185 doi: 10.1093/nar/gkac1164
Li, Y. G., Kishida, K., Ogawa-Kishida, N. & Christie, P. J. Ligand-displaying Escherichia coli cells and minicells for programmable delivery of toxic payloads via type IV secretion systems. mBio 14, e0214323 (2023).
Glass, D. S. & Riedel-Kruse, I. H. A synthetic bacterial cell-cell adhesion toolbox for programming multicellular morphologies and patterns. Cell 174, 649–658 e616 (2018).
pubmed: 30033369 doi: 10.1016/j.cell.2018.06.041
Chao, G. et al. helixCAM: a platform for programmable cellular assembly in bacteria and human cells. Cell 185, 3551–3567 e3539 (2022).
pubmed: 36055250 doi: 10.1016/j.cell.2022.08.012
Pinero-Lambea, C. et al. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth. Biol. 4, 463–473 (2015).
pubmed: 25045780 doi: 10.1021/sb500252a
Krohl, P. J. et al. Discovery of antibodies targeting multipass transmembrane proteins using a suspension cell-based evolutionary approach. Cell Rep. Methods 3, 100429 (2023).
pubmed: 37056366 pmcid: 10088246 doi: 10.1016/j.crmeth.2023.100429
Stark, Y., Venet, S. & Schmid, A. Whole cell panning with phage display. Methods Mol. Biol. 1575, 67–91 (2017).
pubmed: 28255875 doi: 10.1007/978-1-4939-6857-2_5
Klimke, W. A. et al. The mating pair stabilization protein, TraN, of the F plasmid is an outer-membrane protein with two regions that are important for its function in conjugation. Microbiology 151, 3527–3540 (2005).
pubmed: 16272376 doi: 10.1099/mic.0.28025-0
Salema, V. et al. Selection of single domain antibodies from immune libraries displayed on the surface of E. coli cells with two beta-domains of opposite topologies. PLoS One 8, e75126 (2013).
pubmed: 24086454 pmcid: 3781032 doi: 10.1371/journal.pone.0075126
Ferrieres, L. et al. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J. Bacteriol. 192, 6418–6427 (2010).
pubmed: 20935093 pmcid: 3008518 doi: 10.1128/JB.00621-10
del Campo, I. et al. Determination of conjugation rates on solid surfaces. Plasmid 67, 174–182 (2012).
pubmed: 22289895 doi: 10.1016/j.plasmid.2012.01.008
Haase, J., Lurz, R., Grahn, A. M., Bamford, D. H. & Lanka, E. Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of a proposed DNA transport complex. J. Bacteriol. 177, 4779–4791 (1995).
pubmed: 7642506 pmcid: 177245 doi: 10.1128/jb.177.16.4779-4791.1995
Ruano-Gallego, D., Fraile, S., Gutierrez, C. & Fernandez, L. A. Screening and purification of nanobodies from E. coli culture supernatants using the hemolysin secretion system. Micro. Cell Fact. 18, 47 (2019).
doi: 10.1186/s12934-019-1094-0
Low, W. W. et al. Mating pair stabilization mediates bacterial conjugation species specificity. Nat. Microbiol. 7, 1016–1027 (2022).
pubmed: 35697796 pmcid: 9246713 doi: 10.1038/s41564-022-01146-4
McMahon, C. et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 25, 289–296 (2018).
pubmed: 29434346 pmcid: 5839991 doi: 10.1038/s41594-018-0028-6
Zavrtanik, U., Lukan, J., Loris, R., Lah, J. & Hadzi, S. Structural basis of epitope recognition by heavy-chain camelid antibodies. J. Mol. Biol. 430, 4369–4386 (2018).
pubmed: 30205092 doi: 10.1016/j.jmb.2018.09.002
Samsudin, F., Ortiz-Suarez, M. L., Piggot, T. J., Bond, P. J. & Khalid, S. OmpA: a flexible clamp for bacterial cell wall attachment. Structure 24, 2227–2235 (2016).
pubmed: 27866852 doi: 10.1016/j.str.2016.10.009
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).
pubmed: 14665678 pmcid: 309051 doi: 10.1128/MMBR.67.4.593-656.2003
Russell, A. B. et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496, 508–512 (2013).
pubmed: 23552891 pmcid: 3652678 doi: 10.1038/nature12074
Whitney, J. C. et al. Genetically distinct pathways guide effector export through the type VI secretion system. Mol. Microbiol. 92, 529–542 (2014).
pubmed: 24589350 pmcid: 4049467 doi: 10.1111/mmi.12571
Kaur, H. et al. Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach. J. Biomol. NMR 73, 375–384 (2019).
pubmed: 31073665 doi: 10.1007/s10858-019-00250-8
Booth, S. C., Smith, W. P. J. & Foster, K. R. The evolution of short- and long-range weapons for bacterial competition. Nat. Ecol. Evol. 7, 2080–2091 (2023).
pubmed: 38036633 pmcid: 10697841 doi: 10.1038/s41559-023-02234-2
Grohmann, E., Christie, P. J., Waksman, G. & Backert, S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol. Microbiol. 107, 455–471 (2018).
pubmed: 29235173 pmcid: 5796862 doi: 10.1111/mmi.13896
Kunkel, T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl Acad. Sci. USA 82, 488–492 (1985).
pubmed: 3881765 pmcid: 397064 doi: 10.1073/pnas.82.2.488
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
pubmed: 19363495 doi: 10.1038/nmeth.1318
Edwards, R. A., Keller, L. H. & Schifferli, D. M. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207, 149–157 (1998).
pubmed: 9511756 doi: 10.1016/S0378-1119(97)00619-7
Lee, P. C., Stopford, C. M., Svenson, A. G. & Rietsch, A. Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol. Microbiol. 75, 924–941 (2010).
pubmed: 20487288 pmcid: 3124366 doi: 10.1111/j.1365-2958.2009.07027.x
Cardona, S. T. & Valvano, M. A. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia. Plasmid 54, 219–228 (2005).
pubmed: 15925406 doi: 10.1016/j.plasmid.2005.03.004
Choi, K. H. et al. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2, 443–448 (2005).
pubmed: 15908923 doi: 10.1038/nmeth765
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).
pubmed: 10829079 pmcid: 18686 doi: 10.1073/pnas.120163297
Low, W. W., Seddon, C., Beis, K. & Frankel, G. The interaction of the F-like plasmid-encoded TraN isoforms with their cognate outer membrane receptors. J. Bacteriol. 205, e0006123 (2023).
pubmed: 36988519 doi: 10.1128/jb.00061-23
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
pubmed: 27754618 doi: 10.1016/S0076-6879(97)76066-X
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702 pmcid: 2815670 doi: 10.1107/S0907444909052925
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Naik, T., Sharda, M., C, P. L., Virbhadra, K. & Pandit, A. High-quality single amplicon sequencing method for illumina MiSeq platform using pool of ‘N’ (0-10) spacer-linked target specific primers without PhiX spike-in. BMC Genomics 24, 141 (2023).
pubmed: 36959538 pmcid: 10037784 doi: 10.1186/s12864-023-09233-4
Smith, T. F. & Waterman, M. S. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981).
pubmed: 7265238 doi: 10.1016/0022-2836(81)90087-5
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
doi: 10.1063/1.445869
Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol. 13, e1005659 (2017).
pubmed: 28746339 pmcid: 5549999 doi: 10.1371/journal.pcbi.1005659
Huang, J. & MacKerell, A. D. Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).
pubmed: 23832629 pmcid: 3800559 doi: 10.1002/jcc.23354
Gordon, J. C. et al. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 33, W368–371 (2005).
pubmed: 15980491 pmcid: 1160225 doi: 10.1093/nar/gki464
Martin, J. & Frezza, E. A dynamical view of protein-protein complexes: studies by molecular dynamics simulations. Front. Mol. Biosci. 9, 970109 (2022).
pubmed: 36275619 pmcid: 9583002 doi: 10.3389/fmolb.2022.970109
Shrake, A. & Rupley, J. A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79, 351–371 (1973).
pubmed: 4760134 doi: 10.1016/0022-2836(73)90011-9
McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).
pubmed: 26488642 pmcid: 4623899 doi: 10.1016/j.bpj.2015.08.015
Baker, E. N. & Hubbard, R. E. Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 44, 97–179 (1984).
pubmed: 6385134 doi: 10.1016/0079-6107(84)90007-5

Auteurs

Po-Yin Chen (PY)

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan.

Yung-Chih Chen (YC)

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.

Po-Pang Chen (PP)

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.

Kuan-Ting Lin (KT)

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
Program in Molecular Medicine, National Yang-Ming Chao-Tung University and Academia Sinica, Taipei, Taiwan.

Karen Sargsyan (K)

Institute of Chemistry, Academia Sinica, Taipei, Taiwan.

Chao-Ping Hsu (CP)

Institute of Chemistry, Academia Sinica, Taipei, Taiwan.
Physics Division, National Center for Theoretical Sciences, Taipei, Taiwan.
Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan.

Wei-Le Wang (WL)

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan.
Program in Molecular Medicine, National Yang-Ming Chao-Tung University and Academia Sinica, Taipei, Taiwan.

Kuo-Chiang Hsia (KC)

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan.
Institute of Biochemistry and Molecular Biology, College of Life Sciences, National Yang Ming Chiao Tung University, Taipei, Taiwan.

See-Yeun Ting (SY)

Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan. syting@gate.sinica.edu.tw.
Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and National Defense Medical Center, Taipei, Taiwan. syting@gate.sinica.edu.tw.
Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan. syting@gate.sinica.edu.tw.

Articles similaires

Populus Soil Microbiology Soil Microbiota Fungi
Aerosols Humans Decontamination Air Microbiology Masks
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Semiconductors Photosynthesis Polymers Carbon Dioxide Bacteria

Classifications MeSH