A whole-cell platform for discovering synthetic cell adhesion molecules in bacteria.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
03 Aug 2024
03 Aug 2024
Historique:
received:
14
12
2023
accepted:
26
07
2024
medline:
3
8
2024
pubmed:
3
8
2024
entrez:
2
8
2024
Statut:
epublish
Résumé
Developing programmable bacterial cell-cell adhesion is of significant interest due to its versatile applications. Current methods that rely on presenting cell adhesion molecules (CAMs) on bacterial surfaces are limited by the lack of a generalizable strategy to identify such molecules targeting bacterial membrane proteins in their natural states. Here, we introduce a whole-cell screening platform designed to discover CAMs targeting bacterial membrane proteins within a synthetic bacteria-displayed nanobody library. Leveraging the potency of the bacterial type IV secretion system-a contact-dependent DNA delivery nanomachine-we have established a positive feedback mechanism to selectively enrich for bacteria displaying nanobodies that target antigen-expressing cells. Our platform successfully identified functional CAMs capable of recognizing three distinct outer membrane proteins (TraN, OmpA, OmpC), demonstrating its efficacy in CAM discovery. This approach holds promise for engineering bacterial cell-cell adhesion, such as directing the antibacterial activity of programmed inhibitor cells toward target bacteria in mixed populations.
Identifiants
pubmed: 39095377
doi: 10.1038/s41467-024-51017-1
pii: 10.1038/s41467-024-51017-1
doi:
Substances chimiques
Cell Adhesion Molecules
0
Single-Domain Antibodies
0
Bacterial Outer Membrane Proteins
0
OMPA outer membrane proteins
149024-69-1
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
6568Subventions
Organisme : Academia Sinica
ID : AS-CDA-112-L05
Organisme : Academia Sinica
ID : AS-IVA-112-L05
Informations de copyright
© 2024. The Author(s).
Références
Kim, H. et al. 4-bit adhesion logic enables universal multicellular interface patterning. Nature 608, 324–329 (2022).
pubmed: 35948712
pmcid: 9365691
doi: 10.1038/s41586-022-04944-2
Xavier, J. B. Social interaction in synthetic and natural microbial communities. Mol. Syst. Biol. 7, 483 (2011).
pubmed: 21487402
pmcid: 3101950
doi: 10.1038/msb.2011.16
Chen, B. et al. Programmable living assembly of materials by bacterial adhesion. Nat. Chem. Biol. 18, 289–294 (2022).
pubmed: 34934187
doi: 10.1038/s41589-021-00934-z
Nadell, C. D., Drescher, K. & Foster, K. R. Spatial structure, cooperation and competition in biofilms. Nat. Rev. Microbiol. 14, 589–600 (2016).
pubmed: 27452230
doi: 10.1038/nrmicro.2016.84
Chen, H. J., Peng, C. F., Tang, C. W. & Chen, Y. T. Self-healing concrete by biological substrate. Materials 12, 4099 (2019).
pubmed: 31817964
pmcid: 6947293
doi: 10.3390/ma12244099
Ting, S. Y. et al. Targeted depletion of bacteria from mixed populations by programmable adhesion with antagonistic competitor cells. Cell Host Microbe 28, 313–321 e316 (2020).
pubmed: 32470328
pmcid: 7725374
doi: 10.1016/j.chom.2020.05.006
Robledo, M. et al. Targeted bacterial conjugation mediated by synthetic cell-to-cell adhesions. Nucleic Acids Res. 50, 12938–12950 (2022).
pubmed: 36511856
pmcid: 9825185
doi: 10.1093/nar/gkac1164
Li, Y. G., Kishida, K., Ogawa-Kishida, N. & Christie, P. J. Ligand-displaying Escherichia coli cells and minicells for programmable delivery of toxic payloads via type IV secretion systems. mBio 14, e0214323 (2023).
Glass, D. S. & Riedel-Kruse, I. H. A synthetic bacterial cell-cell adhesion toolbox for programming multicellular morphologies and patterns. Cell 174, 649–658 e616 (2018).
pubmed: 30033369
doi: 10.1016/j.cell.2018.06.041
Chao, G. et al. helixCAM: a platform for programmable cellular assembly in bacteria and human cells. Cell 185, 3551–3567 e3539 (2022).
pubmed: 36055250
doi: 10.1016/j.cell.2022.08.012
Pinero-Lambea, C. et al. Programming controlled adhesion of E. coli to target surfaces, cells, and tumors with synthetic adhesins. ACS Synth. Biol. 4, 463–473 (2015).
pubmed: 25045780
doi: 10.1021/sb500252a
Krohl, P. J. et al. Discovery of antibodies targeting multipass transmembrane proteins using a suspension cell-based evolutionary approach. Cell Rep. Methods 3, 100429 (2023).
pubmed: 37056366
pmcid: 10088246
doi: 10.1016/j.crmeth.2023.100429
Stark, Y., Venet, S. & Schmid, A. Whole cell panning with phage display. Methods Mol. Biol. 1575, 67–91 (2017).
pubmed: 28255875
doi: 10.1007/978-1-4939-6857-2_5
Klimke, W. A. et al. The mating pair stabilization protein, TraN, of the F plasmid is an outer-membrane protein with two regions that are important for its function in conjugation. Microbiology 151, 3527–3540 (2005).
pubmed: 16272376
doi: 10.1099/mic.0.28025-0
Salema, V. et al. Selection of single domain antibodies from immune libraries displayed on the surface of E. coli cells with two beta-domains of opposite topologies. PLoS One 8, e75126 (2013).
pubmed: 24086454
pmcid: 3781032
doi: 10.1371/journal.pone.0075126
Ferrieres, L. et al. Silent mischief: bacteriophage Mu insertions contaminate products of Escherichia coli random mutagenesis performed using suicidal transposon delivery plasmids mobilized by broad-host-range RP4 conjugative machinery. J. Bacteriol. 192, 6418–6427 (2010).
pubmed: 20935093
pmcid: 3008518
doi: 10.1128/JB.00621-10
del Campo, I. et al. Determination of conjugation rates on solid surfaces. Plasmid 67, 174–182 (2012).
pubmed: 22289895
doi: 10.1016/j.plasmid.2012.01.008
Haase, J., Lurz, R., Grahn, A. M., Bamford, D. H. & Lanka, E. Bacterial conjugation mediated by plasmid RP4: RSF1010 mobilization, donor-specific phage propagation, and pilus production require the same Tra2 core components of a proposed DNA transport complex. J. Bacteriol. 177, 4779–4791 (1995).
pubmed: 7642506
pmcid: 177245
doi: 10.1128/jb.177.16.4779-4791.1995
Ruano-Gallego, D., Fraile, S., Gutierrez, C. & Fernandez, L. A. Screening and purification of nanobodies from E. coli culture supernatants using the hemolysin secretion system. Micro. Cell Fact. 18, 47 (2019).
doi: 10.1186/s12934-019-1094-0
Low, W. W. et al. Mating pair stabilization mediates bacterial conjugation species specificity. Nat. Microbiol. 7, 1016–1027 (2022).
pubmed: 35697796
pmcid: 9246713
doi: 10.1038/s41564-022-01146-4
McMahon, C. et al. Yeast surface display platform for rapid discovery of conformationally selective nanobodies. Nat. Struct. Mol. Biol. 25, 289–296 (2018).
pubmed: 29434346
pmcid: 5839991
doi: 10.1038/s41594-018-0028-6
Zavrtanik, U., Lukan, J., Loris, R., Lah, J. & Hadzi, S. Structural basis of epitope recognition by heavy-chain camelid antibodies. J. Mol. Biol. 430, 4369–4386 (2018).
pubmed: 30205092
doi: 10.1016/j.jmb.2018.09.002
Samsudin, F., Ortiz-Suarez, M. L., Piggot, T. J., Bond, P. J. & Khalid, S. OmpA: a flexible clamp for bacterial cell wall attachment. Structure 24, 2227–2235 (2016).
pubmed: 27866852
doi: 10.1016/j.str.2016.10.009
Nikaido, H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67, 593–656 (2003).
pubmed: 14665678
pmcid: 309051
doi: 10.1128/MMBR.67.4.593-656.2003
Russell, A. B. et al. Diverse type VI secretion phospholipases are functionally plastic antibacterial effectors. Nature 496, 508–512 (2013).
pubmed: 23552891
pmcid: 3652678
doi: 10.1038/nature12074
Whitney, J. C. et al. Genetically distinct pathways guide effector export through the type VI secretion system. Mol. Microbiol. 92, 529–542 (2014).
pubmed: 24589350
pmcid: 4049467
doi: 10.1111/mmi.12571
Kaur, H. et al. Identification of conformation-selective nanobodies against the membrane protein insertase BamA by an integrated structural biology approach. J. Biomol. NMR 73, 375–384 (2019).
pubmed: 31073665
doi: 10.1007/s10858-019-00250-8
Booth, S. C., Smith, W. P. J. & Foster, K. R. The evolution of short- and long-range weapons for bacterial competition. Nat. Ecol. Evol. 7, 2080–2091 (2023).
pubmed: 38036633
pmcid: 10697841
doi: 10.1038/s41559-023-02234-2
Grohmann, E., Christie, P. J., Waksman, G. & Backert, S. Type IV secretion in Gram-negative and Gram-positive bacteria. Mol. Microbiol. 107, 455–471 (2018).
pubmed: 29235173
pmcid: 5796862
doi: 10.1111/mmi.13896
Kunkel, T. A. Rapid and efficient site-specific mutagenesis without phenotypic selection. Proc. Natl Acad. Sci. USA 82, 488–492 (1985).
pubmed: 3881765
pmcid: 397064
doi: 10.1073/pnas.82.2.488
Gibson, D. G. et al. Enzymatic assembly of DNA molecules up to several hundred kilobases. Nat. Methods 6, 343–345 (2009).
pubmed: 19363495
doi: 10.1038/nmeth.1318
Edwards, R. A., Keller, L. H. & Schifferli, D. M. Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207, 149–157 (1998).
pubmed: 9511756
doi: 10.1016/S0378-1119(97)00619-7
Lee, P. C., Stopford, C. M., Svenson, A. G. & Rietsch, A. Control of effector export by the Pseudomonas aeruginosa type III secretion proteins PcrG and PcrV. Mol. Microbiol. 75, 924–941 (2010).
pubmed: 20487288
pmcid: 3124366
doi: 10.1111/j.1365-2958.2009.07027.x
Cardona, S. T. & Valvano, M. A. An expression vector containing a rhamnose-inducible promoter provides tightly regulated gene expression in Burkholderia cenocepacia. Plasmid 54, 219–228 (2005).
pubmed: 15925406
doi: 10.1016/j.plasmid.2005.03.004
Choi, K. H. et al. A Tn7-based broad-range bacterial cloning and expression system. Nat. Methods 2, 443–448 (2005).
pubmed: 15908923
doi: 10.1038/nmeth765
Datsenko, K. A. & Wanner, B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl Acad. Sci. USA 97, 6640–6645 (2000).
pubmed: 10829079
pmcid: 18686
doi: 10.1073/pnas.120163297
Low, W. W., Seddon, C., Beis, K. & Frankel, G. The interaction of the F-like plasmid-encoded TraN isoforms with their cognate outer membrane receptors. J. Bacteriol. 205, e0006123 (2023).
pubmed: 36988519
doi: 10.1128/jb.00061-23
Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).
pubmed: 27754618
doi: 10.1016/S0076-6879(97)76066-X
Adams, P. D. et al. PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr. D Biol. Crystallogr. 66, 213–221 (2010).
pubmed: 20124702
pmcid: 2815670
doi: 10.1107/S0907444909052925
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
pubmed: 15572765
doi: 10.1107/S0907444904019158
Naik, T., Sharda, M., C, P. L., Virbhadra, K. & Pandit, A. High-quality single amplicon sequencing method for illumina MiSeq platform using pool of ‘N’ (0-10) spacer-linked target specific primers without PhiX spike-in. BMC Genomics 24, 141 (2023).
pubmed: 36959538
pmcid: 10037784
doi: 10.1186/s12864-023-09233-4
Smith, T. F. & Waterman, M. S. Identification of common molecular subsequences. J. Mol. Biol. 147, 195–197 (1981).
pubmed: 7265238
doi: 10.1016/0022-2836(81)90087-5
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
doi: 10.1063/1.445869
Eastman, P. et al. OpenMM 7: Rapid development of high performance algorithms for molecular dynamics. PLoS Comput Biol. 13, e1005659 (2017).
pubmed: 28746339
pmcid: 5549999
doi: 10.1371/journal.pcbi.1005659
Huang, J. & MacKerell, A. D. Jr. CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145 (2013).
pubmed: 23832629
pmcid: 3800559
doi: 10.1002/jcc.23354
Gordon, J. C. et al. H++: a server for estimating pKas and adding missing hydrogens to macromolecules. Nucleic Acids Res. 33, W368–371 (2005).
pubmed: 15980491
pmcid: 1160225
doi: 10.1093/nar/gki464
Martin, J. & Frezza, E. A dynamical view of protein-protein complexes: studies by molecular dynamics simulations. Front. Mol. Biosci. 9, 970109 (2022).
pubmed: 36275619
pmcid: 9583002
doi: 10.3389/fmolb.2022.970109
Shrake, A. & Rupley, J. A. Environment and exposure to solvent of protein atoms. Lysozyme and insulin. J. Mol. Biol. 79, 351–371 (1973).
pubmed: 4760134
doi: 10.1016/0022-2836(73)90011-9
McGibbon, R. T. et al. MDTraj: a modern open library for the analysis of molecular dynamics trajectories. Biophys. J. 109, 1528–1532 (2015).
pubmed: 26488642
pmcid: 4623899
doi: 10.1016/j.bpj.2015.08.015
Baker, E. N. & Hubbard, R. E. Hydrogen bonding in globular proteins. Prog. Biophys. Mol. Biol. 44, 97–179 (1984).
pubmed: 6385134
doi: 10.1016/0079-6107(84)90007-5