Nicotine reduces discrimination between threat and safety in the hippocampus, nucleus accumbens and amygdala.


Journal

Translational psychiatry
ISSN: 2158-3188
Titre abrégé: Transl Psychiatry
Pays: United States
ID NLM: 101562664

Informations de publication

Date de publication:
03 Aug 2024
Historique:
received: 11 01 2024
accepted: 26 07 2024
medline: 4 8 2024
pubmed: 4 8 2024
entrez: 3 8 2024
Statut: epublish

Résumé

Nicotine intake is linked to the maintenance and development of anxiety disorders and impairs adaptive discrimination of threat and safety in rodents and humans. Yet, it is unclear if nicotine exerts a causal pharmacological effect on the affective and neural mechanisms that underlie aversive learning. We conducted a pre-registered, pseudo-randomly and double-blinded pharmacological fMRI study to investigate the effect of acute nicotine on Fear Acquisition and Extinction in non-smokers (n = 88). Our results show that nicotine administration led to decreased discrimination between threat and safety in subjective fear. Nicotine furthermore decreased differential (threat vs. safety) activation in the hippocampus, which was functionally coupled with Nucleus Accumbens and amygdala, compared to placebo controls. Additionally, nicotine led to enhanced physiological arousal to learned threats and overactivation of the ventral tegmental area. This study provides mechanistic evidence that single doses of nicotine impair neural substrates of adaptive aversive learning in line with the risk for the development of pathological anxiety.

Identifiants

pubmed: 39097609
doi: 10.1038/s41398-024-03040-5
pii: 10.1038/s41398-024-03040-5
doi:

Substances chimiques

Nicotine 6M3C89ZY6R
Nicotinic Agonists 0

Types de publication

Journal Article Randomized Controlled Trial

Langues

eng

Sous-ensembles de citation

IM

Pagination

319

Subventions

Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : SFB 936 (178316478 - C06)
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : TRR 289 (422744262 - A06)
Organisme : Deutsche Forschungsgemeinschaft (German Research Foundation)
ID : 7470/3-1

Informations de copyright

© 2024. The Author(s).

Références

Delgado MR, Olsson A, Phelps EA. Extending animal models of fear conditioning to humans. Biol Psychol. 2006;73:39–48.
doi: 10.1016/j.biopsycho.2006.01.006 pubmed: 16472906
Sangha S, Diehl MM, Bergstrom HC, Drew MR. Know safety, no fear. Neurosci Biobehav Rev. 2020;108:218–30.
doi: 10.1016/j.neubiorev.2019.11.006 pubmed: 31738952
Britton JC, Lissek S, Grillon C, Norcross MA, Pine DS. Development of anxiety: the role of threat appraisal and fear learning. Depress Anxiety. 2011;28:5–17.
doi: 10.1002/da.20733 pubmed: 20734364
Lawrence D, Considine J, Mitrou F & Zubrick SR. Anxiety disorders and cigarette smoking: Results from the australian survey of mental health and wellbeing, 520-7 (2010).
Mueller M, Weisser S, Rauh J, Haaker J. Smokers show increased fear responses towards safety signals during fear generalization, independent from acute smoking. Sci Rep. 2022;12:1–10.
doi: 10.1038/s41598-022-12550-5
Isensee B, Wittchen H-U, Stein MB, Höfler M, Lieb R. Smoking increases the risk of panic: findings from a prospective community study. Arch Gen Psychiatry. 2003;60:692–700.
doi: 10.1001/archpsyc.60.7.692 pubmed: 12860773
Gozzi A, Schwarz A, Reese T, Bertani S, Crestan V, Bifone A. Region-specific effects of nicotine on brain activity: a pharmacological MRI study in the drug-naïve rat. Neuropsychopharmacol. 2006;31:1690–703.
doi: 10.1038/sj.npp.1300955
Wonnacott S, Bermudez I, Millar NS, Tzartos SJ. Nicotinic acetylcholine receptors. Br J Pharmacol. 2018;175:1785–8.
doi: 10.1111/bph.14209 pubmed: 29878346 pmcid: 5979630
Davis JA, Kenney JW, Gould TJ. Hippocampal α4β2 nicotinic acetylcholine receptor involvement in the enhancing effect of acute nicotine on contextual fear conditioning. J Neurosci 2007;27:10870–7.
doi: 10.1523/JNEUROSCI.3242-07.2007 pubmed: 17913920 pmcid: 2705889
Kutlu MG, Gould TJ. Nicotine modulation of fear memories and anxiety: implications for learning and anxiety disorders. Biochem Pharmacol. 2015;97:498–511.
doi: 10.1016/j.bcp.2015.07.029 pubmed: 26231942 pmcid: 4600451
Chaaya N, Battle AR, Johnson LR. An update on contextual fear memory mechanisms: transition between Amygdala and Hippocampus. Neurosci Biobehav Rev. 2018;92:43–54.
doi: 10.1016/j.neubiorev.2018.05.013 pubmed: 29752958
Lonsdorf TB, Menz MM, Andreatta M, Fullana MA, Golkar A, Haaker J, et al. Don’t fear ‘fear conditioning’: methodological considerations for the design and analysis of studies on human fear acquisition, extinction, and return of fear. Neurosci Biobehav Rev. 2017;77:247–85.
doi: 10.1016/j.neubiorev.2017.02.026 pubmed: 28263758
Palmisano AN, Gould TJ & Astur RS. The effect of acute nicotine administration on human delay cued and context fear conditioning. Experimental and Clinical Psychopharmacology. 2022 https://doi.org/10.1037/pha0000592 .
Kutlu MG, Marin M-F, Tumolo JM, Kaur N, VanElzakker MB, Shin LM, et al. Nicotine exposure leads to deficits in differential cued fear conditioning in mice and humans: A potential role of the anterior cingulate cortex. Neurosci Lett. 2018;673:142–9.
doi: 10.1016/j.neulet.2018.03.002 pubmed: 29518543 pmcid: 7296766
Kutlu MG, Oliver C & Gould TJ. The effects of acute nicotine on contextual safety discrimination. J Psychopharmacol. 2014;1064–70.
Connor DA, Kutlu MG, Gould TJ. Nicotine disrupts safety learning by enhancing fear associated with a safety cue via the dorsal hippocampus. J Psychopharmacol. 2017;31:934–44.
doi: 10.1177/0269881117695861 pubmed: 28675115 pmcid: 5755391
Haaker J, Lonsdorf TB, Schümann D, Bunzeck N, Peters J, Sommer T, et al. Where there is smoke there is fear—impaired contextual inhibition of conditioned fear in smokers. Neuropsychopharmacol. 2017;42:1640–6.
doi: 10.1038/npp.2017.17
Esser R, Korn CW, Ganzer F & Haaker J. L-DOPA modulates activity in the vmPFC, nucleus accumbens, and VTA during threat extinction learning in humans. Elife. 2021;10:e65280.
Andreatta M, Leombruni E, Glotzbach-Schoon E, Pauli P, Mühlberger A. Generalization of contextual fear in humans. Behav Ther. 2015;46:583–96.
doi: 10.1016/j.beth.2014.12.008 pubmed: 26459839
Lonsdorf TB, Haaker J, Kalisch R. Long-term expression of human contextual fear and extinction memories involves amygdala, hippocampus and ventromedial prefrontal cortex: a reinstatement study in two independent samples. Soc Cogn Affect Neurosci. 2014;9:1973–83.
doi: 10.1093/scan/nsu018 pubmed: 24493848 pmcid: 4249485
Weisser S, Mueller M, Rauh J, Esser R, Fuss J, Lutz B, et al. Acquisition of threat responses are associated with elevated plasma concentration of endocannabinoids in male humans. Neuropsychopharmacol. 2022;47:1931–8.
doi: 10.1038/s41386-022-01320-6
Bunzeck N, Düzel E. Absolute coding of stimulus novelty in the human substantia Nigra/VTA. Neuron. 2006;51:369–79.
doi: 10.1016/j.neuron.2006.06.021 pubmed: 16880131
Spielberger CD State-Trait Anxiety Inventory for Adults (American Psychological Association (APA) 1983).
Brickenkamp R & Zilmer E PsycTESTS Dataset (1998).
Bates D, Mächler M, Bolker B & Walker S Fitting Linear Mixed-Effects Models using lme4 (6/23/2014).
Love J, Selker R, Marsman M, Jamil T, Dropmann D & Verhagen J. et al. JASp : graphical statistical software for common statistical designs. J Stat Soft. 2019;88:1–17.
Wen Z, Raio CM, Pace-Schott EF, Lazar SW, LeDoux JE, Phelps EA, et al. Temporally and anatomically specific contributions of the human amygdala to threat and safety learning. Proc Natl Acad Sci USA. 2022;119:e2204066119.
doi: 10.1073/pnas.2204066119 pubmed: 35727981 pmcid: 9245701
Byrne DG. Cigarette smoking, psychological stress, and cardiovascular arousal. Aust J Psychol. 2000;52:1–8.
doi: 10.1080/00049530008255360
Fujii N, Louie JC, McNeely BD, Zhang SY, Tran M-A, Kenny GP. Nicotinic receptor activation augments muscarinic receptor-mediated eccrine sweating but not cutaneous vasodilatation in young males. Exp Physiol. 2017;102:245–54.
doi: 10.1113/EP085916 pubmed: 27859779
Myers KM, Davis M. Behavioral and neural analysis of extinction. Neuron. 2002;36:567–84.
doi: 10.1016/S0896-6273(02)01064-4 pubmed: 12441048
Hartley CA, Phelps EA. Changing fear: the neurocircuitry of emotion regulation. Neuropsychopharmacol. 2010;35:136–46.
doi: 10.1038/npp.2009.121
Raybuck JD, Gould TJ. The role of nicotinic acetylcholine receptors in the medial prefrontal cortex and hippocampus in trace fear conditioning. Neurobiol Learn Mem. 2010;94:353–63.
doi: 10.1016/j.nlm.2010.08.001 pubmed: 20727979 pmcid: 2949463
Nguyen C, Mondoloni S, Le Borgne T, Centeno I, Come M, Jehl J, et al. Nicotine inhibits the VTA-to-amygdala dopamine pathway to promote anxiety. Neuron. 2021;109:2604–.e9.
doi: 10.1016/j.neuron.2021.06.013 pubmed: 34242565
Lisman JE, Grace AA. The Hippocampal-VTA loop: controlling the entry of information into long-term memory. Neuron. 2005;46:703–13.
doi: 10.1016/j.neuron.2005.05.002 pubmed: 15924857
Liu L, Zhao-Shea R, McIntosh JM, Gardner PD, Tapper AR. Nicotine persistently activates ventral tegmental area dopaminergic neurons via nicotinic acetylcholine receptors containing α4 and α6 subunits. Mol Pharm. 2012;81:541–8.
doi: 10.1124/mol.111.076661
Kutlu MG, Zachry JE, Melugin PR, Cajigas SA, Chevee MF, Kelly SJ, et al. Dopamine release in the nucleus accumbens core signals perceived saliency. Curr Biol. 2021;31:4748–.e8.
doi: 10.1016/j.cub.2021.08.052 pubmed: 34529938 pmcid: 9084920
Sun N, Laviolette SR. Dopamine receptor blockade modulates the rewarding and aversive properties of nicotine via dissociable neuronal activity patterns in the nucleus accumbens. Neuropsychopharmacology. 2014;39:2799–815.
doi: 10.1038/npp.2014.130 pubmed: 24896614 pmcid: 4200490
Duits P, Cath DC, Lissek S, Hox JJ, Hamm AO, Engelhard IM, et al. Updated meta‐analysis of classical fear conditioning in the anxiety disorders. Depress Anxiety. 2015;32:239–53.
doi: 10.1002/da.22353 pubmed: 25703487
Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, et al. Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry. 2009;66:1075–82.
doi: 10.1016/j.biopsych.2009.06.026 pubmed: 19748076 pmcid: 2787650
Ahrens S, Thiel CM. Effects of nicotine on task switching and distraction in non-smokers. An fMRI study. Neuroscience. 2020;444:43–53.
doi: 10.1016/j.neuroscience.2020.07.029 pubmed: 32717295
Kobiella A, Ulshöfer DE, Vollmert C, Vollstädt-Klein S, Bühler M, Esslinger C, et al. Nicotine increases neural response to unpleasant stimuli and anxiety in non-smokers. Addict Biol. 2011;16:285–95.
doi: 10.1111/j.1369-1600.2010.00237.x pubmed: 20731637

Auteurs

Madeleine Mueller (M)

University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany. dr.madmueller@gmail.com.

Tahmine Fadai (T)

University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany.
University Medical Center Hamburg-Eppendorf (Germany), Department of Child- and Adolescent Psychiatry and Psychotherapy, Hamburg, Germany.

Jonas Rauh (J)

University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany.
University Medical Center Hamburg-Eppendorf (Germany), Department of Psychiatry and Psychotherapy, Psychiatry Neuroimaging Branch, Hamburg, Germany.

Jan Haaker (J)

University Medical Center Hamburg-Eppendorf (Germany), Department of Systems Neuroscience, Hamburg, Germany. j.haaker@uke.de.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH