Unveiling the unknown viral world in groundwater.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
08 Aug 2024
Historique:
received: 04 12 2023
accepted: 01 08 2024
medline: 9 8 2024
pubmed: 9 8 2024
entrez: 8 8 2024
Statut: epublish

Résumé

Viruses as the prevailing biological entities are poorly understood in underground realms. Here, we establish the first metagenomic Groundwater Virome Catalogue (GWVC) comprising 280,420 viral species ( ≥ 5 kb) detected from 607 monitored wells in seven geo-environmental zones throughout China. In expanding ~10-fold the global portfolio of known groundwater viruses, we uncover over 99% novel viruses and about 95% novel viral clusters. By linking viruses to hosts from 119 prokaryotic phyla, we double the number of microbial phyla known to be virus-infected in groundwater. As keystone ultrasmall symbionts in aquifers, CPR bacteria and DPANN archaea are susceptible to virulent viruses. Certain complete CPR viruses even likely infect non-CPR bacteria, while partial CPR/DPANN viruses harbor cell-surface modification genes that assist symbiont cell adhesion to free-living microbes. This study reveals the unknown viral world and auxiliary metabolism associated with methane, nitrogen, sulfur, and phosphorus cycling in groundwater, and highlights the importance of subsurface virosphere in viral ecology.

Identifiants

pubmed: 39117653
doi: 10.1038/s41467-024-51230-y
pii: 10.1038/s41467-024-51230-y
doi:

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6788

Subventions

Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : U2240205
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 51721006
Organisme : National Natural Science Foundation of China (National Science Foundation of China)
ID : 423B2703

Informations de copyright

© 2024. The Author(s).

Références

Zimmerman, A. E. et al. Metabolic and biogeochemical consequences of viral infection in aquatic ecosystems. Nat. Rev. Microbiol. 18, 21–34 (2020).
pubmed: 31690825 doi: 10.1038/s41579-019-0270-x
Chevallereau, A., Pons, B. J., van Houte, S. & Westra, E. R. Interactions between bacterial and phage communities in natural environments. Nat. Rev. Microbiol. 20, 49–62 (2022).
pubmed: 34373631 doi: 10.1038/s41579-021-00602-y
Liang, G. & Bushman, F. D. The human virome: assembly, composition and host interactions. Nat. Rev. Microbiol. 19, 514–527 (2021).
pubmed: 33785903 pmcid: 8008777 doi: 10.1038/s41579-021-00536-5
Magnabosco, C. et al. The biomass and biodiversity of the continental subsurface. Nat. Geosci. 11, 707–717 (2018).
doi: 10.1038/s41561-018-0221-6
Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected biogeochemical processes in an aquifer system. Nat. Commun. 7, 13219 (2016).
pubmed: 27774985 pmcid: 5079060 doi: 10.1038/ncomms13219
Méheust, R. et al. Groundwater Elusimicrobia are metabolically diverse compared to gut microbiome Elusimicrobia and some have a novel nitrogenase paralog. ISME J. 14, 2907–2922 (2020).
pubmed: 32681159 pmcid: 7785019 doi: 10.1038/s41396-020-0716-1
He, C. et al. Genome-resolved metagenomics reveals site-specific diversity of episymbiotic CPR bacteria and DPANN archaea in groundwater ecosystems. Nat. Microbiol. 6, 354–365 (2021).
pubmed: 33495623 pmcid: 7906910 doi: 10.1038/s41564-020-00840-5
Holmes, D. E. et al. Evidence of Geobacter-associated phage in a uranium-contaminated aquifer. ISME J. 9, 333–346 (2015).
pubmed: 25083935 doi: 10.1038/ismej.2014.128
Holmfeldt, K. et al. The Fennoscandian Shield deep terrestrial virosphere suggests slow motion ‘boom and burst’ cycles. Commun. Biol. 4, 307 (2021).
pubmed: 33686191 pmcid: 7940616 doi: 10.1038/s42003-021-01810-1
Kyle, J. E., Eydal, H. S. C., Ferris, F. G. & Pedersen, K. Viruses in granitic groundwater from 69 to 450 m depth of the Äspö hard rock laboratory, Sweden. ISME J. 2, 571–574, (2008).
pubmed: 18288217 doi: 10.1038/ismej.2008.18
Eydal, H. S. C., Jägevall, S., Hermansson, M. & Pedersen, K. Bacteriophage lytic to Desulfovibrio aespoeensis isolated from deep groundwater. ISME J. 3, 1139–1147, (2009).
pubmed: 19516280 doi: 10.1038/ismej.2009.66
Hylling, O. et al. Two novel bacteriophage genera from a groundwater reservoir highlight subsurface environments as underexplored biotopes in bacteriophage ecology. Sci. Rep. 10, 11879 (2020).
pubmed: 32681144 pmcid: 7368026 doi: 10.1038/s41598-020-68389-1
Cai, L., Weinbauer, M. G., Xie, L. & Zhang, R. The smallest in the deepest: the enigmatic role of viruses in the deep biosphere. Natl Sci. Rev. 10, nwad009 (2023).
pubmed: 36960220 pmcid: 10029852 doi: 10.1093/nsr/nwad009
Dion, M. B., Oechslin, F. & Moineau, S. Phage diversity, genomics and phylogeny. Nat. Rev. Microbiol. 18, 125–138 (2020).
pubmed: 32015529 doi: 10.1038/s41579-019-0311-5
Breitbart, M., Bonnain, C., Malki, K. & Sawaya, N. A. Phage puppet masters of the marine microbial realm. Nat. Microbiol. 3, 754–766 (2018).
pubmed: 29867096 doi: 10.1038/s41564-018-0166-y
Paez-Espino, D. et al. Uncovering Earth’s virome. Nature 536, 425–430 (2016).
pubmed: 27533034 doi: 10.1038/nature19094
Roux, S. et al. Ecogenomics and potential biogeochemical impacts of globally abundant ocean viruses. Nature 537, 689–693 (2016).
pubmed: 27654921 doi: 10.1038/nature19366
Schulz, F. et al. Giant virus diversity and host interactions through global metagenomics. Nature 578, 432–436 (2020).
pubmed: 31968354 pmcid: 7162819 doi: 10.1038/s41586-020-1957-x
Camarillo-Guerrero, L. F., Almeida, A., Rangel-Pineros, G., Finn, R. D. & Lawley, T. D. Massive expansion of human gut bacteriophage diversity. Cell 184, 1098–1109.e9 (2021).
pubmed: 33606979 pmcid: 7895897 doi: 10.1016/j.cell.2021.01.029
Brum, J. R. et al. Patterns and ecological drivers of ocean viral communities. Science 348, 1261498 (2015).
pubmed: 25999515 doi: 10.1126/science.1261498
Emerson, J. B. et al. Host-linked soil viral ecology along a permafrost thaw gradient. Nat. Microbiol. 3, 870–880 (2018).
pubmed: 30013236 pmcid: 6786970 doi: 10.1038/s41564-018-0190-y
Starr, E. P., Nuccio, E. E., Pett-Ridge, J., Banfield, J. F. & Firestone, M. K. Metatranscriptomic reconstruction reveals RNA viruses with the potential to shape carbon cycling in soil. Proc. Natl Acad. Sci. USA 116, 25900–25908 (2019).
pubmed: 31772013 pmcid: 6926006 doi: 10.1073/pnas.1908291116
Nayfach, S. et al. Metagenomic compendium of 189,680 DNA viruses from the human gut microbiome. Nat. Microbiol. 6, 960–970 (2021).
pubmed: 34168315 pmcid: 8241571 doi: 10.1038/s41564-021-00928-6
Chen, Y., Wang, Y., Paez-Espino, D., Polz, M. F. & Zhang, T. Prokaryotic viruses impact functional microorganisms in nutrient removal and carbon cycle in wastewater treatment plants. Nat. Commun. 12, 5398 (2021).
pubmed: 34518545 pmcid: 8438041 doi: 10.1038/s41467-021-25678-1
Daly, R. A. et al. Viruses control dominant bacteria colonizing the terrestrial deep biosphere after hydraulic fracturing. Nat. Microbiol. 4, 352–361 (2019).
pubmed: 30510171 doi: 10.1038/s41564-018-0312-6
Kothari, A. et al. Ecogenomics of groundwater phages suggests niche differentiation linked to specific environmental tolerance. mSystems 6, e0053721 (2021).
pubmed: 34184913 doi: 10.1128/mSystems.00537-21
Rahlff, J. et al. Lytic archaeal viruses infect abundant primary producers in Earth’s crust. Nat. Commun. 12, 4642 (2021).
pubmed: 34330907 pmcid: 8324899 doi: 10.1038/s41467-021-24803-4
Burstein, D. et al. Major bacterial lineages are essentially devoid of CRISPR-Cas viral defence systems. Nat. Commun. 7, 10613 (2016).
pubmed: 26837824 pmcid: 4742961 doi: 10.1038/ncomms10613
Zhong, S. et al. May microbial ecological baseline exist in continental groundwater? Microbiome 11, 152 (2023).
pubmed: 37468948 pmcid: 10355068 doi: 10.1186/s40168-023-01572-4
Castelle, C. J. et al. Biosynthetic capacity, metabolic variety and unusual biology in the CPR and DPANN radiations. Nat. Rev. Microbiol. 16, 629–645 (2018).
pubmed: 30181663 doi: 10.1038/s41579-018-0076-2
Dombrowski, N., Lee, J.-H., Williams, T. A., Offre, P. & Spang, A. Genomic diversity, lifestyles and evolutionary origins of DPANN archaea. FEMS Microbiol. Lett. 366, fnz008 (2019).
pubmed: 30629179 pmcid: 6349945 doi: 10.1093/femsle/fnz008
Dombrowski, N. et al. Undinarchaeota illuminate DPANN phylogeny and the impact of gene transfer on archaeal evolution. Nat. Commun. 11, 3939 (2020).
pubmed: 32770105 pmcid: 7414124 doi: 10.1038/s41467-020-17408-w
Makarova, K. S. et al. Evolutionary classification of CRISPR–Cas systems: a burst of class 2 and derived variants. Nat. Rev. Microbiol. 18, 67–83 (2020).
pubmed: 31857715 doi: 10.1038/s41579-019-0299-x
Burstein, D. et al. New CRISPR–Cas systems from uncultivated microbes. Nature 542, 237–241 (2017).
pubmed: 28005056 doi: 10.1038/nature21059
Li, Y.-X. et al. Deciphering Symbiotic Interactions of “Candidatus Aenigmarchaeota” with Inferred Horizontal Gene Transfers and Co-occurrence Networks. mSystems 6, e00606–e00621 (2021).
pubmed: 34313464 pmcid: 8407114 doi: 10.1128/mSystems.00606-21
Mende, D. R. et al. Environmental drivers of a microbial genomic transition zone in the ocean’s interior. Nat. Microbiol. 2, 1367–1373 (2017).
pubmed: 28808230 doi: 10.1038/s41564-017-0008-3
Grzymski, J. J. & Dussaq, A. M. The significance of nitrogen cost minimization in proteomes of marine microorganisms. ISME J. 6, 71–80 (2011).
pubmed: 21697958 pmcid: 3246230 doi: 10.1038/ismej.2011.72
Roux, S. et al. IMG/VR v3: an integrated ecological and evolutionary framework for interrogating genomes of uncultivated viruses. Nucleic Acids Res 49, D764–D775 (2021).
pubmed: 33137183 doi: 10.1093/nar/gkaa946
Bischoff, V. et al. Cobaviruses—a new globally distributed phage group infecting Rhodobacteraceae in marine ecosystems. ISME J. 13, 1404–1421 (2019).
pubmed: 30718806 pmcid: 6775973 doi: 10.1038/s41396-019-0362-7
Koonin, E. V. et al. Global Organization and Proposed Megataxonomy of the Virus World. Microbiol. Mol. Biol. Rev. 84, e00061–19 (2020).
pubmed: 32132243 pmcid: 7062200 doi: 10.1128/MMBR.00061-19
Roux, S. et al. Cryptic inoviruses revealed as pervasive in bacteria and archaea across Earth’s biomes. Nat. Microbiol. 4, 1895–1906 (2019).
pubmed: 31332386 pmcid: 6813254 doi: 10.1038/s41564-019-0510-x
Dudek, N. K. et al. Novel Microbial Diversity and Functional Potential in the Marine Mammal Oral Microbiome. Curr. Biol. 27, 3752–3762.e6 (2017).
pubmed: 29153320 doi: 10.1016/j.cub.2017.10.040
Li, S. et al. A catalog of 48,425 nonredundant viruses from oral metagenomes expands the horizon of the human oral virome. iScience 25, 104418 (2022).
pubmed: 35663034 pmcid: 9160773 doi: 10.1016/j.isci.2022.104418
Al-Shayeb, B. et al. Clades of huge phages from across Earth’s ecosystems. Nature 578, 425–431 (2020).
pubmed: 32051592 pmcid: 7162821 doi: 10.1038/s41586-020-2007-4
Hwang, Y., Roux, S., Coclet, C., Krause, S. J. E. & Girguis, P. R. Viruses interact with hosts that span distantly related microbial domains in dense hydrothermal mats. Nat. Microbiol. 8, 946–957 (2023).
pubmed: 37024618 pmcid: 10159854 doi: 10.1038/s41564-023-01347-5
Malki, K. et al. Bacteriophages isolated from Lake Michigan demonstrate broad host-range across several bacterial phyla. Virol. J. 12, 164 (2015).
pubmed: 26453042 pmcid: 4600314 doi: 10.1186/s12985-015-0395-0
Castelle et al. Genomic Expansion of Domain Archaea Highlights Roles for Organisms from New Phyla in Anaerobic Carbon Cycling. Curr. Biol. 25, 690–701 (2015).
pubmed: 25702576 doi: 10.1016/j.cub.2015.01.014
Barker, J. F. & Fritz, P. Carbon isotope fractionation during microbial methane oxidation. Nature 293, 289–291 (1981).
doi: 10.1038/293289a0
Chen, L.-X. et al. Large freshwater phages with the potential to augment aerobic methane oxidation. Nat. Microbiol. 5, 1504–1515 (2020).
pubmed: 32839536 pmcid: 7674155 doi: 10.1038/s41564-020-0779-9
Lee, S. et al. Methane-derived carbon flows into host–virus networks at different trophic levels in soil. Proc. Natl Acad. Sci. USA 118, e2105124118 (2021).
pubmed: 34349022 pmcid: 8364182 doi: 10.1073/pnas.2105124118
Gazitúa, M. C. et al. Potential virus-mediated nitrogen cycling in oxygen-depleted oceanic waters. ISME J. 15, 981–998 (2021).
pubmed: 33199808 doi: 10.1038/s41396-020-00825-6
Li, Z. et al. Deep sea sediments associated with cold seeps are a subsurface reservoir of viral diversity. ISME J. 15, 2366–2378 (2021).
pubmed: 33649554 pmcid: 8319345 doi: 10.1038/s41396-021-00932-y
Kieft, K. et al. Virus-associated organosulfur metabolism in human and environmental systems. Cell Rep. 36, 109471 (2021).
pubmed: 34348151 doi: 10.1016/j.celrep.2021.109471
Liang, J.-L. et al. Hidden diversity and potential ecological function of phosphorus acquisition genes in widespread terrestrial bacteriophages. Nat. Commun. 15, 2827 (2024).
pubmed: 38565528 pmcid: 10987575 doi: 10.1038/s41467-024-47214-7
Gao, S. et al. Patterns and ecological drivers of viral communities in acid mine drainage sediments across Southern China. Nat. Commun. 13, 2389 (2022).
pubmed: 35501347 pmcid: 9061769 doi: 10.1038/s41467-022-30049-5
Uritskiy, G. V., DiRuggiero, J. & Taylor, J. MetaWRAP—a flexible pipeline for genome-resolved metagenomic data analysis. Microbiome 6, 158 (2018).
pubmed: 30219103 pmcid: 6138922 doi: 10.1186/s40168-018-0541-1
Paez-Espino, D., Pavlopoulos, G. A., Ivanova, N. N. & Kyrpides, N. C. Nontargeted virus sequence discovery pipeline and virus clustering for metagenomic data. Nat. Protoc. 12, 1673–1682 (2017).
pubmed: 28749930 doi: 10.1038/nprot.2017.063
Antipov, D., Raiko, M., Lapidus, A. & Pevzner, P. A. MetaviralSPAdes: assembly of viruses from metagenomic data. Bioinformatics 36, 4126–4129 (2020).
pubmed: 32413137 doi: 10.1093/bioinformatics/btaa490
Kieft, K., Zhou, Z. & Anantharaman, K. VIBRANT: automated recovery, annotation and curation of microbial viruses, and evaluation of viral community function from genomic sequences. Microbiome 8, 90 (2020).
pubmed: 32522236 pmcid: 7288430 doi: 10.1186/s40168-020-00867-0
Fang, Z. et al. PPR-Meta: a tool for identifying phages and plasmids from metagenomic fragments using deep learning. GigaScience 8, giz066 (2019).
pubmed: 31220250 pmcid: 6586199 doi: 10.1093/gigascience/giz066
Eddy, S. R. Accelerated Profile HMM Searches. PLoS Comput. Biol. 7, e1002195 (2011).
pubmed: 22039361 pmcid: 3197634 doi: 10.1371/journal.pcbi.1002195
Kanehisa, M. & Goto, S. KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28, 27–30 (2000).
pubmed: 10592173 pmcid: 102409 doi: 10.1093/nar/28.1.27
Finn, R. D. et al. Pfam: the protein families database. Nucleic Acids Res 42, D222–D230 (2014).
pubmed: 24288371 doi: 10.1093/nar/gkt1223
Katoh, K. & Standley, D. M. MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability. Mol. Biol. Evol. 30, 772–780, (2013).
pubmed: 23329690 pmcid: 3603318 doi: 10.1093/molbev/mst010
Camargo, A. P. et al. Identification of mobile genetic elements with geNomad. Nat. Biotechnol., (2023).
Nayfach, S. et al. CheckV assesses the quality and completeness of metagenome-assembled viral genomes. Nat. Biotechnol. 39, 578–585 (2021).
pubmed: 33349699 doi: 10.1038/s41587-020-00774-7
Roux, S. et al. Minimum Information about an Uncultivated Virus Genome (MIUViG). Nat. Biotechnol. 37, 29–37 (2019).
pubmed: 30556814 doi: 10.1038/nbt.4306
Li, W. & Godzik, A. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659 (2006).
pubmed: 16731699 doi: 10.1093/bioinformatics/btl158
Hyatt, D. et al. Prodigal: prokaryotic gene recognition and translation initiation site identification. BMC Bioinforma. 11, 119 (2010).
doi: 10.1186/1471-2105-11-119
Parks, D. H., Imelfort, M., Skennerton, C. T., Hugenholtz, P. & Tyson, G. W. CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. Genome Res 25, 1043–1055, (2015).
pubmed: 25977477 pmcid: 4484387 doi: 10.1101/gr.186072.114
Olm, M. R., Brown, C. T., Brooks, B. & Banfield, J. F. dRep: a tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through de-replication. ISME J. 11, 2864–2868 (2017).
pubmed: 28742071 pmcid: 5702732 doi: 10.1038/ismej.2017.126
Chaumeil, P. A., Mussig, A. J., Hugenholtz, P. & Parks, D. H. GTDB-Tk: a toolkit to classify genomes with the Genome Taxonomy Database. Bioinformatics 36, 1925–1927, (2019).
pubmed: 31730192 pmcid: 7703759 doi: 10.1093/bioinformatics/btz848
Parks, D. H. et al. A complete domain-to-species taxonomy for Bacteria and Archaea. Nat. Biotechnol. 38, 1079–1086 (2020).
pubmed: 32341564 doi: 10.1038/s41587-020-0501-8
Tominaga, K., Morimoto, D., Nishimura, Y., Ogata, H. & Yoshida, T. In silico prediction of virus-host interactions for marine bacteroidetes with the use of metagenome-assembled genomes. Front. Microbiol. 11, 738 (2020).
pubmed: 32411107 pmcid: 7198788 doi: 10.3389/fmicb.2020.00738
Kavagutti, V. S., Andrei, A., Mehrshad, M., Salcher, M. M. & Ghai, R. Phage-centric ecological interactions in aquatic ecosystems revealed through ultra-deep metagenomics. Microbiome 7, 135 (2019).
pubmed: 31630686 pmcid: 6802176 doi: 10.1186/s40168-019-0752-0
Camacho, C. et al. BLAST+: architecture and applications. BMC Bioinforma. 10, 421 (2009).
doi: 10.1186/1471-2105-10-421
Lu, C. et al. Prokaryotic virus host predictor: a Gaussian model for host prediction of prokaryotic viruses in metagenomics. BMC Biol. 19, 5 (2021).
pubmed: 33441133 pmcid: 7807511 doi: 10.1186/s12915-020-00938-6
Hockenberry, A. J. & Wilke, C. O. BACPHLIP: predicting bacteriophage lifestyle from conserved protein domains. PeerJ 9, e11396 (2021).
pubmed: 33996289 pmcid: 8106911 doi: 10.7717/peerj.11396
Roux, S. et al. iPHoP: An integrated machine learning framework to maximize host prediction for metagenome-derived viruses of archaea and bacteria. PLoS Biol. 21, e3002083 (2023).
pubmed: 37083735 pmcid: 10155999 doi: 10.1371/journal.pbio.3002083
Couvin, D. et al. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res 46, W246–W251 (2018).
pubmed: 29790974 pmcid: 6030898 doi: 10.1093/nar/gky425
Bin Jang, H. et al. Taxonomic assignment of uncultivated prokaryotic virus genomes is enabled by gene-sharing networks. Nat. Biotechnol. 37, 632–639 (2019).
doi: 10.1038/s41587-019-0100-8
Shannon, P. et al. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res 13, 2498–2504 (2003).
pubmed: 14597658 pmcid: 403769 doi: 10.1101/gr.1239303
Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 9, 357–359, (2012).
pubmed: 22388286 pmcid: 3322381 doi: 10.1038/nmeth.1923
Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
pubmed: 19505943 pmcid: 2723002 doi: 10.1093/bioinformatics/btp352
Cantalapiedra, C. P., Hernández-Plaza, A., Letunic, I., Bork, P. & Huerta-Cepas, J. eggNOG-mapper v2: Functional annotation, orthology assignments, and domain prediction at the metagenomic scale. Mol. Biol. Evol. 38, 5825–5829 (2021).
pubmed: 34597405 pmcid: 8662613 doi: 10.1093/molbev/msab293
Tatusov, R. L., Galperin, M. Y., Natale, D. A. & Koonin, E. V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res 28, 33–36, (2000).
pubmed: 10592175 pmcid: 102395 doi: 10.1093/nar/28.1.33
Sayers, E. W. et al. Database resources of the national center for biotechnology information. Nucleic Acids Res 50, D20–D26 (2022).
pubmed: 34850941 doi: 10.1093/nar/gkab1112
Suzek, B. E. et al. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics 31, 926–932 (2014).
pubmed: 25398609 pmcid: 4375400 doi: 10.1093/bioinformatics/btu739
Cantarel, B. L. et al. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics. Nucleic Acids Res 37, D233–D238 (2009).
pubmed: 18838391 doi: 10.1093/nar/gkn663
Selengut, J. D. et al. TIGRFAMs and Genome Properties: tools for the assignment of molecular function and biological process in prokaryotic genomes. Nucleic Acids Res 35, D260–D264 (2007).
pubmed: 17151080 doi: 10.1093/nar/gkl1043
Zhou, Z. et al. METABOLIC: high-throughput profiling of microbial genomes for functional traits, metabolism, biogeochemistry, and community-scale functional networks. Microbiome 10, 33 (2022).
pubmed: 35172890 pmcid: 8851854 doi: 10.1186/s40168-021-01213-8
Pratama, A. A. et al. Expanding standards in viromics: in silico evaluation of dsDNA viral genome identification, classification, and auxiliary metabolic gene curation. PeerJ 9, e11447 (2021).
pubmed: 34178438 pmcid: 8210812 doi: 10.7717/peerj.11447
Guo, J. et al. VirSorter2: a multi-classifier, expert-guided approach to detect diverse DNA and RNA viruses. Microbiome 9, 37 (2021).
pubmed: 33522966 pmcid: 7852108 doi: 10.1186/s40168-020-00990-y
Shaffer, M. et al. DRAM for distilling microbial metabolism to automate the curation of microbiome function. Nucleic Acids Res 48, 8883–8900 (2020).
pubmed: 32766782 pmcid: 7498326 doi: 10.1093/nar/gkaa621
Kelley, L. A., Mezulis, S., Yates, C. M., Wass, M. N. & Sternberg, M. J. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10, 845–858, (2015).
pubmed: 25950237 pmcid: 5298202 doi: 10.1038/nprot.2015.053
Nishimura, Y. et al. ViPTree: the viral proteomic tree server. Bioinformatics 33, 2379–2380 (2017).
pubmed: 28379287 doi: 10.1093/bioinformatics/btx157
Letunic, I. & Bork, P. Interactive Tree Of Life (iTOL) v5: an online tool for phylogenetic tree display and annotation. Nucleic Acids Res 49, W293–W296 (2021).
pubmed: 33885785 pmcid: 8265157 doi: 10.1093/nar/gkab301
Low, S. J., Džunková, M., Chaumeil, P.-A., Parks, D. H. & Hugenholtz, P. Evaluation of a concatenated protein phylogeny for classification of tailed double-stranded DNA viruses belonging to the order Caudovirales. Nat. Microbiol. 4, 1306–1315 (2019).
pubmed: 31110365 doi: 10.1038/s41564-019-0448-z
Capella-Gutiérrez, S., Silla-Martínez, J. M. & Gabaldón, T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25, 1972–1973, (2009).
pubmed: 19505945 pmcid: 2712344 doi: 10.1093/bioinformatics/btp348
Price, M. N., Dehal, P. S. & Arkin, A. P. FastTree 2-approximately maximum-likelihood trees for large alignments. PLoS ONE 5, e9490 (2010).
pubmed: 20224823 pmcid: 2835736 doi: 10.1371/journal.pone.0009490
Edgar, R. C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32, 1792–1797 (2004).
pubmed: 15034147 pmcid: 390337 doi: 10.1093/nar/gkh340
Waterhouse, A. M., Procter, J. B., Martin, D. M. A., Clamp, M. & Barton, G. J. Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).
pubmed: 19151095 pmcid: 2672624 doi: 10.1093/bioinformatics/btp033

Auteurs

Zongzhi Wu (Z)

Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.

Tang Liu (T)

Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, PR China.

Qian Chen (Q)

Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.
Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.

Tianyi Chen (T)

Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.

Jinyun Hu (J)

Environmental Microbiome and Innovative Genomics Laboratory, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, PR China.

Liyu Sun (L)

Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.

Bingxue Wang (B)

Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China.

Wenpeng Li (W)

Center for Groundwater Monitoring, China Institute of Geo-environmental Monitoring, Beijing, 100081, PR China.

Jinren Ni (J)

Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen, 518055, PR China. jinrenni@pku.edu.cn.
College of Environmental Sciences and Engineering, Key Laboratory of Water and Sediment Sciences, Ministry of Education, Peking University, Beijing, 100871, PR China. jinrenni@pku.edu.cn.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Populus Soil Microbiology Soil Microbiota Fungi
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH