A pH-sensitive motif in an outer membrane protein activates bacterial membrane vesicle production.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
13 Aug 2024
Historique:
received: 16 11 2023
accepted: 02 08 2024
medline: 14 8 2024
pubmed: 14 8 2024
entrez: 13 8 2024
Statut: epublish

Résumé

Outer membrane vesicles (OMVs) produced by Gram-negative bacteria have key roles in cell envelope homeostasis, secretion, interbacterial communication, and pathogenesis. The facultative intracellular pathogen Salmonella Typhimurium increases OMV production inside the acidic vacuoles of host cells by changing expression of its outer membrane proteins and modifying the composition of lipid A. However, the molecular mechanisms that translate pH changes into OMV production are not completely understood. Here, we show that the outer membrane protein PagC promotes OMV production through pH-dependent interactions between its extracellular loops and surrounding lipopolysaccharide (LPS). Structural comparisons and mutational studies indicate that a pH-responsive amino acid motif in PagC extracellular loops, containing PagC-specific histidine residues, is crucial for OMV formation. Molecular dynamics simulations suggest that protonation of histidine residues leads to changes in the structure and flexibility of PagC extracellular loops and their interactions with the surrounding LPS, altering membrane curvature. Consistent with that hypothesis, mimicking acidic pH by mutating those histidine residues to lysine increases OMV production. Thus, our findings reveal a mechanism for sensing and responding to environmental pH and for control of membrane dynamics by outer membrane proteins.

Identifiants

pubmed: 39138228
doi: 10.1038/s41467-024-51364-z
pii: 10.1038/s41467-024-51364-z
doi:

Substances chimiques

Bacterial Outer Membrane Proteins 0
Lipopolysaccharides 0
Histidine 4QD397987E

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

6958

Subventions

Organisme : Howard Hughes Medical Institute (HHMI)
ID : CC30430

Informations de copyright

© 2024. The Author(s).

Références

Schwechheimer, C. & Kuehn, M. J. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619 (2015).
pubmed: 26373371 pmcid: 5308417 doi: 10.1038/nrmicro3525
Sartorio, M. G., Pardue, E. J., Feldman, M. F. & Haurat, M. F. Bacterial outer membrane vesicles: from discovery to applications. Annu. Rev. Microbiol. 75, 609–630 (2021).
pubmed: 34351789 pmcid: 8500939 doi: 10.1146/annurev-micro-052821-031444
Kulp, A. & Kuehn, M. J. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184 (2010).
pubmed: 20825345 pmcid: 3525469 doi: 10.1146/annurev.micro.091208.073413
Mashburn, L. M. & Whiteley, M. Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437, 422–425 (2005).
pubmed: 16163359 doi: 10.1038/nature03925
Dutta, S. et al. Release of Shiga toxin by membrane vesicles in Shigella dysenteriae serotype 1 strains and in vitro effects of antimicrobials on toxin production and release. Microbiol. Immunol. 48, 965–969 (2004).
pubmed: 15611613 doi: 10.1111/j.1348-0421.2004.tb03626.x
Toyofuku, M., Schild, S., Kaparakis-Liaskos, M. & Eberl, L. Composition and functions of bacterial membrane vesicles. Nat. Rev. Microbiol. 21, 415–430 (2023).
pubmed: 36932221 doi: 10.1038/s41579-023-00875-5
McBroom, A. J. & Kuehn, M. J. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63, 545–558 (2007).
pubmed: 17163978 pmcid: 1868505 doi: 10.1111/j.1365-2958.2006.05522.x
Roier, S. et al. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat. Commun. 7, 10515 (2016).
pubmed: 26806181 pmcid: 4737802 doi: 10.1038/ncomms10515
Schwechheimer, C., Sullivan, C. J. & Kuehn, M. J. Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochemistry 52, 3031–3040 (2013).
pubmed: 23521754 doi: 10.1021/bi400164t
Kudryakova, I. V., Suzina, N. E., Vinokurova, N. G., Shishkova, N. A. & Vasilyeva, N. V. Studying factors involved in biogenesis of Lysobacter sp. XL1 outer membrane vesicles. Biochemistry 82, 501–509 (2017).
pubmed: 28371608
Bonnington, K. E. & Kuehn, M. J. Breaking the bilayer: OMV formation during environmental transitions. Microb. Cell 4, 64–66 (2017).
pubmed: 28357390 pmcid: 5349123 doi: 10.15698/mic2017.02.558
Elhenawy, W. et al. LPS remodeling triggers formation of outer membrane vesicles in Salmonella. mBio 7, e00940–16 (2016).
Schromm, A. B. et al. Biological activities of lipopolysaccharides are determined by the shape of their lipid A portion. Eur. J. Biochem. 267, 2008–2013 (2000).
pubmed: 10727940 doi: 10.1046/j.1432-1327.2000.01204.x
McMahon, H. T. & Boucrot, E. Membrane curvature at a glance. J. Cell Sci. 128, 1065–1070 (2015).
pubmed: 25774051 pmcid: 4359918 doi: 10.1242/jcs.114454
Li, Q. Mechanisms for the invasion and dissemination of Salmonella. Can. J. Infect. Dis. Med. Microbiol. 2022, 2655801 (2022).
pubmed: 35722038 pmcid: 9203224 doi: 10.1155/2022/2655801
Ernst, R. K., Guina, T. & Miller, S. I. How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J. Infect. Dis. 179, S326–S330 (1999).
pubmed: 10081503 doi: 10.1086/513850
Vescovi, E. G., Ayala, Y. M., Di Cera, E. & Groisman, E. A. Characterization of the bacterial sensor protein PhoQ. Evidence for distinct binding sites for Mg
pubmed: 8999810 doi: 10.1074/jbc.272.3.1440
Miller, S. I., Kukral, A. M. & Mekalanos, J. J. A two-component regulatory system (phoP phoQ) controls Salmonella Typhimurium virulence. Proc. Natl Acad. Sci. USA 86, 5054–5058 (1989).
pubmed: 2544889 pmcid: 297555 doi: 10.1073/pnas.86.13.5054
Groisman, E. A., Chiao, E., Lipps, C. J. & Heffron, F. Salmonella Typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl Acad. Sci. USA 86, 7077–7081 (1989).
pubmed: 2674945 pmcid: 297997 doi: 10.1073/pnas.86.18.7077
Alpuche Aranda, C. M., Swanson, J. A., Loomis, W. P. & Miller, S. I. Salmonella Typhimurium activates virulence gene transcription within acidified macrophage phagosomes. Proc. Natl Acad. Sci. USA 89, 10079–10083 (1992).
pubmed: 1438196 pmcid: 50281 doi: 10.1073/pnas.89.21.10079
Bonnington, K. E. & Kuehn, M. J. Outer Membrane vesicle production facilitates LPS remodeling and outer membrane maintenance in Salmonella during environmental transitions. mBio 7, e01532–16 (2016).
Bishop, R. E. et al. Transfer of palmitate from phospholipids to lipid A in outer membranes of gram-negative bacteria. EMBO J. 19, 5071–5080 (2000).
pubmed: 11013210 pmcid: 302101 doi: 10.1093/emboj/19.19.5071
Trent, M. S., Pabich, W., Raetz, C. R. & Miller, S. I. A PhoP/PhoQ-induced lipase (PagL) that catalyzes 3-O-deacylation of lipid A precursors in membranes of Salmonella Typhimurium. J. Biol. Chem. 276, 9083–9092 (2001).
pubmed: 11108722 doi: 10.1074/jbc.M010730200
Kitagawa, R. et al. Biogenesis of Salmonella enterica serovar Typhimurium membrane vesicles provoked by induction of PagC. J. Bacteriol. 192, 5645–5656 (2010).
pubmed: 20802043 pmcid: 2953678 doi: 10.1128/JB.00590-10
Dehinwal, R. et al. Increased production of outer membrane vesicles by Salmonella interferes with complement-mediated innate immune attack. mBio 12, e0086921 (2021).
pubmed: 34061589 doi: 10.1128/mBio.00869-21
Yamashita, S. et al. Structural insights into Ail-mediated adhesion in Yersinia pestis. Structure 19, 1672–1682 (2011).
pubmed: 22078566 pmcid: 3217190 doi: 10.1016/j.str.2011.08.010
Marassi, F. M., Ding, Y., Schwieters, C. D., Tian, Y. & Yao, Y. Backbone structure of Yersinia pestis Ail determined in micelles by NMR-restrained simulated annealing with implicit membrane solvation. J. Biomol. 63, 59–65 (2015).
doi: 10.1007/s10858-015-9963-2
Dutta, S. K., Yao, Y. & Marassi, F. M. Structural insights into the Yersinia pestis outer membrane protein Ail in lipid bilayers. J. Phys. Chem. B 121, 7561–7570 (2017).
pubmed: 28726410 pmcid: 5713880 doi: 10.1021/acs.jpcb.7b03941
Singh, C. et al. Mutually constructive roles of Ail and LPS in Yersinia pestis serum survival. Mol. Microbiol. 114, 510–520 (2020).
pubmed: 32462782 pmcid: 7594906 doi: 10.1111/mmi.14530
Ricci, D. P. & Silhavy, T. J. Outer membrane protein insertion by the beta-barrel assembly machine. EcoSal Plus 8, https://doi.org/10.1128/ecosalplus.ESP-0035-2018 (2019).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Harrison, J. S. et al. Role of electrostatic repulsion in controlling pH-dependent conformational changes of viral fusion proteins. Structure 21, 1085–1096 (2013).
pubmed: 23823327 pmcid: 3701885 doi: 10.1016/j.str.2013.05.009
Mihailescu, M. et al. Structure and function in antimicrobial Piscidins: histidine position, directionality of membrane insertion, and pH-dependent permeabilization. J. Am. Chem. Soc. 141, 9837–9853 (2019).
pubmed: 31144503 pmcid: 7312726 doi: 10.1021/jacs.9b00440
Kovalevsky, A. et al. Protonation states of histidine and other key residues in deoxy normal human adult hemoglobin by neutron protein crystallography. Acta Crystallogr D. Biol. Crystallogr. 66, 1144–1152 (2010).
pubmed: 21041929 pmcid: 2967419 doi: 10.1107/S0907444910025448
Baumgart, T., Capraro, B. R., Zhu, C. & Das, S. L. Thermodynamics and mechanics of membrane curvature generation and sensing by proteins and lipids. Annu. Rev. Phys. Chem. 62, 483–506 (2011).
pubmed: 21219150 pmcid: 4205088 doi: 10.1146/annurev.physchem.012809.103450
Siggel, M., Bhaskara, R. M., Moesser, M. K., I, D. I. & Hummer, G. FAM134B-RHD protein clustering drives spontaneous budding of asymmetric membranes. J. Phys. Chem. Lett. 12, 1926–1931 (2021).
pubmed: 33591770 pmcid: 8028312 doi: 10.1021/acs.jpclett.1c00031
Cianfanelli, F. R., Cunrath, O. & Bumann, D. Efficient dual-negative selection for bacterial genome editing. BMC Microbiol. 20, 129 (2020).
pubmed: 32448155 pmcid: 7245781 doi: 10.1186/s12866-020-01819-2
Cunrath, O. et al. Quantitative contribution of efflux to multi-drug resistance of clinical Escherichia coli and Pseudomonas aeruginosa strains. EBioMedicine 41, 479–487 (2019).
pubmed: 30852163 pmcid: 6443642 doi: 10.1016/j.ebiom.2019.02.061
Sengyee, S. et al. Comprehensive analysis of clinical Burkholderia pseudomallei isolates demonstrates conservation of unique lipid A structure and TLR4-dependent innate immune activation. PLoS Negl. Trop. Dis. 12, e0006287 (2018).
pubmed: 29474381 pmcid: 5842036 doi: 10.1371/journal.pntd.0006287
Hittle, L. E. et al. Site-specific activity of the acyltransferases HtrB1 and HtrB2 in Pseudomonas aeruginosa lipid A biosynthesis. Pathog. Dis. 73, ftv053 (2015).
pubmed: 26223882 pmcid: 4626592 doi: 10.1093/femspd/ftv053
Clamp, M., Cuff, J., Searle, S. M. & Barton, G. J. The Jalview Java alignment editor. Bioinformatics 20, 426–427 (2004).
pubmed: 14960472 doi: 10.1093/bioinformatics/btg430
Thompson, J. D., Higgins, D. G. & Gibson, T. J. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680 (1994).
pubmed: 7984417 pmcid: 308517 doi: 10.1093/nar/22.22.4673
Brooks, B. R. et al. CHARMM: the biomolecular simulation program. J. Comput. Chem. 30, 1545–1614 (2009).
pubmed: 19444816 pmcid: 2810661 doi: 10.1002/jcc.21287
Hatcher, E., Guvench, O. & Mackerell, A. D. CHARMM additive all-atom force field for aldopentofuranoses, methyl-aldopentofuranosides, and fructofuranose. J. Phys. Chem. B 113, 12466–12476 (2009).
pubmed: 19694450 pmcid: 2741538 doi: 10.1021/jp905496e
Klauda, J. B. et al. Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J. Phys. Chem. B 114, 7830–7843 (2010).
pubmed: 20496934 pmcid: 2922408 doi: 10.1021/jp101759q
Guvench, O. et al. Additive empirical force field for hexopyranose monosaccharides. J. Comput. Chem. 29, 2543–2564 (2008).
pubmed: 18470966 pmcid: 2882059 doi: 10.1002/jcc.21004
Jorgensen, W. L., Chandrasekhar, J., Madura, J. D., Impey, R. W. & Klein, M. L. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys. 79, 926–935 (1983).
doi: 10.1063/1.445869
Jo, S., Kim, T., Iyer, V. G. & Im, W. CHARMM-GUI: a web-based graphical user interface for CHARMM. J. Comput. Chem. 29, 1859–1865 (2008).
pubmed: 18351591 doi: 10.1002/jcc.20945
Jo, S., Lim, J. B., Klauda, J. B. & Im, W. CHARMM-GUI membrane builder for mixed bilayers and its application to yeast membranes. Biophys. J. 97, 50–58 (2009).
pubmed: 19580743 pmcid: 2711372 doi: 10.1016/j.bpj.2009.04.013
Wu, E. L. et al. CHARMM-GUI membrane builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014).
pubmed: 25130509 pmcid: 4165794 doi: 10.1002/jcc.23702
Lee, J. et al. CHARMM-GUI membrane builder for complex biological membrane simulations with glycolipids and lipoglycans. J. Chem. Theory Comput 15, 775–786 (2019).
pubmed: 30525595 doi: 10.1021/acs.jctc.8b01066
Chow, K.-H. & Ferguson, D. M. Isothermal-isobaric molecular dynamics simulations with Monte Carlo volume sampling. Comput. Phys. Commun. 91, 283–289 (1995).
doi: 10.1016/0010-4655(95)00059-O
Åqvist, J., Wennerström, P., Nervall, M., Bjelic, S. & Brandsdal, B. O. Molecular dynamics simulations of water and biomolecules with a Monte Carlo constant pressure algorithm. Chem. Phys. Lett. 384, 288–294 (2004).
doi: 10.1016/j.cplett.2003.12.039
Ernst, R. K., Guina, T. & Miller, S. I. Salmonella Typhimurium outer membrane remodeling: role in resistance to host innate immunity. Microbes Infect. 3, 1327–1334 (2001).
pubmed: 11755422 doi: 10.1016/S1286-4579(01)01494-0
Eastman, P. et al. OpenMM 4: a reusable, extensible, hardware independent library for high performance molecular simulation. J. Chem. Theory Comput. 9, 461–469 (2013).
pubmed: 23316124 doi: 10.1021/ct300857j
Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011).
pubmed: 21500218 pmcid: 3144279 doi: 10.1002/jcc.21787
Song, W. et al. PyLipID: a Python package for analysis of protein–lipid interactions from molecular dynamics simulations. J. Chem. Theory Comput. 18, 1188–1201 (2022).
pubmed: 35020380 pmcid: 8830038 doi: 10.1021/acs.jctc.1c00708
Kawasaki, K., Ernst, R. K. & Miller, S. I. Inhibition of Salmonella enterica serovar Typhimurium lipopolysaccharide deacylation by aminoarabinose membrane modification. J. Bacteriol. 187, 2448–2457 (2005).
pubmed: 15774888 pmcid: 1065228 doi: 10.1128/JB.187.7.2448-2457.2005
Waterhouse, A. M., Procter, J. B., Martin, D. M., Clamp, M. & Barton, G. J. Jalview Version 2–a multiple sequence alignment editor and analysis workbench. Bioinformatics 25, 1189–1191 (2009).
pubmed: 19151095 pmcid: 2672624 doi: 10.1093/bioinformatics/btp033

Auteurs

Ruchika Dehinwal (R)

Division of Infectious Diseases, Brigham and Women's Hospital, Boston, USA.
Department of Microbiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA.

Tata Gopinath (T)

Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA.

Richard D Smith (RD)

Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA.

Robert K Ernst (RK)

Department of Microbial Pathogenesis, School of Dentistry, University of Maryland, Baltimore, MD, USA.

Dieter M Schifferli (DM)

Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA. dmschiff@vet.upenn.edu.

Matthew K Waldor (MK)

Division of Infectious Diseases, Brigham and Women's Hospital, Boston, USA. mwaldor@bwh.harvard.edu.
Department of Microbiology, Harvard Medical School, Howard Hughes Medical Institute, Boston, MA, USA. mwaldor@bwh.harvard.edu.

Francesca M Marassi (FM)

Department of Biophysics, Medical College of Wisconsin, Milwaukee, WI, USA. fmarassi@mcw.edu.

Articles similaires

Photosynthesis Ribulose-Bisphosphate Carboxylase Carbon Dioxide Molecular Dynamics Simulation Cyanobacteria
Aspergillus Hydrogen-Ion Concentration Coculture Techniques Secondary Metabolism Streptomyces rimosus
Fucosyltransferases Drug Repositioning Molecular Docking Simulation Molecular Dynamics Simulation Humans
Receptor, Cannabinoid, CB1 Ligands Molecular Dynamics Simulation Protein Binding Thermodynamics

Classifications MeSH