Inflammatory turmoil within: an exploration of autoinflammatory disease genetic underpinnings, clinical presentations, and therapeutic approaches.
Humans
Hereditary Autoinflammatory Diseases
/ genetics
Inflammasomes
/ genetics
Inflammation
/ genetics
Signal Transduction
Interleukin-18
/ genetics
Interleukin-1beta
/ genetics
NF-kappa B
Anemia, Dyserythropoietic, Congenital
/ genetics
Schnitzler Syndrome
/ genetics
Osteomyelitis
/ genetics
Mevalonate Kinase Deficiency
/ genetics
Immunologic Deficiency Syndromes
Anti-inflammatory signaling pathway impairment
Autoinflammatory diseases
IL-18/IL-36 signaling pathway defects
Inflammasomopathies
Monogenic
Relopathies
Type I interferonopathies
Journal
Advances in rheumatology (London, England)
ISSN: 2523-3106
Titre abrégé: Adv Rheumatol
Pays: England
ID NLM: 101734172
Informations de publication
Date de publication:
22 Aug 2024
22 Aug 2024
Historique:
received:
04
03
2024
accepted:
11
08
2024
medline:
23
8
2024
pubmed:
23
8
2024
entrez:
22
8
2024
Statut:
epublish
Résumé
Systemic autoinflammatory diseases (SAIDs) arise from dysregulated innate immune system activity, which leads to systemic inflammation. These disorders, encompassing a diverse array of genetic defects classified as inborn errors of immunity, are significant diagnostic challenges due to their genetic heterogeneity and varied clinical presentations. Although recent advances in genetic sequencing have facilitated pathogenic gene discovery, approximately 40% of SAIDs patients lack molecular diagnoses. SAIDs have distinct clinical phenotypes, and targeted therapeutic approaches are needed. This review aims to underscore the complexity and clinical significance of SAIDs, focusing on prototypical disorders grouped according to their pathophysiology as follows: (i) inflammasomopathies, characterized by excessive activation of inflammasomes, which induces notable IL-1β release; (ii) relopathies, which are monogenic disorders characterized by dysregulation within the NF-κB signaling pathway; (iii) IL-18/IL-36 signaling pathway defect-induced SAIDs, autoinflammatory conditions defined by a dysregulated balance of IL-18/IL-36 cytokine signaling, leading to uncontrolled inflammation and tissue damage, mainly in the skin; (iv) type I interferonopathies, a diverse group of disorders characterized by uncontrolled production of type I interferons (IFNs), notably interferon α, β, and ε; (v) anti-inflammatory signaling pathway impairment-induced SAIDs, a spectrum of conditions characterized by IL-10 and TGFβ anti-inflammatory pathway disruption; and (vi) miscellaneous and polygenic SAIDs. The latter group includes VEXAS syndrome, chronic recurrent multifocal osteomyelitis/chronic nonbacterial osteomyelitis, Schnitzler syndrome, and Still's disease, among others, illustrating the heterogeneity of SAIDs and the difficulty in creating a comprehensive classification. Therapeutic strategies involving targeted agents, such as JAK inhibitors, IL-1 blockers, and TNF inhibitors, are tailored to the specific disease phenotypes.
Identifiants
pubmed: 39175060
doi: 10.1186/s42358-024-00404-9
pii: 10.1186/s42358-024-00404-9
doi:
Substances chimiques
Inflammasomes
0
Interleukin-18
0
Interleukin-1beta
0
NF-kappa B
0
Types de publication
Journal Article
Review
Langues
eng
Sous-ensembles de citation
IM
Pagination
62Informations de copyright
© 2024. The Author(s).
Références
Ben-Chetrit E, Gattorno M, Gul A, Kastner DL, Lachmann HJ, Touitou I, et al. Consensus proposal for taxonomy and definition of the autoinflammatory diseases (AIDs): a delphi study. Ann Rheum Dis. 2018;77(11):1558–65.
pubmed: 30100561
doi: 10.1136/annrheumdis-2017-212515
Bousfiha A, Moundir A, Tangye SG, Picard C, Jeddane L, Al-Herz W, et al. The 2022 update of IUIS phenotypical classification for human inborn errors of immunity. J Clin Immunol. 2022;42(7):1508–20.
pubmed: 36198931
doi: 10.1007/s10875-022-01352-z
Chan AY, Torgerson TR. Primary immune regulatory disorders: a growing universe of immune dysregulation. Curr Opin Allergy Clin Immunol. 2020;20(6):582–90.
pubmed: 32941318
pmcid: 7769114
doi: 10.1097/ACI.0000000000000689
Schnappauf O, Aksentijevich I. Current and future advances in genetic testing in systemic autoinflammatory diseases. Rheumatology (Oxford). 2019;58(Suppl 6):vi44–vi55.
pubmed: 31769854
doi: 10.1093/rheumatology/kez294
Başaran Ö, Bilginer Y, Özen S. Rare autoinflammatory diseases. Turk Arch Pediatr. 2022;57(1):18–25.
pubmed: 35110074
pmcid: 8867516
doi: 10.5152/TurkArchPediatr.2022.21303
Boursier G, Hentgen V, Sarrabay G, Koné-Paut I, Touitou I. The changing concepts regarding the mediterranean fever gene: toward a spectrum of pyrin-associated autoinflammatory diseases with variable heredity. J Pediatr. 2019;209:12–6.e1.
pubmed: 30928144
doi: 10.1016/j.jpeds.2019.02.039
The International FMF Consortium. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever. Cell. 1997;90(4):797–807.
de Jesus AA, Canna SW, Liu Y, Goldbach-Mansky R. Molecular mechanisms in genetically defined autoinflammatory diseases: disorders of amplified danger signaling. Annu Rev Immunol. 2015;33:823–74.
pubmed: 25706096
pmcid: 4563985
doi: 10.1146/annurev-immunol-032414-112227
Schutt C, Siegel DM. Autoinflammatory diseases/periodic fevers. Pediatr Rev. 2023;44(9):481–90.
pubmed: 37653132
doi: 10.1542/pir.2022-005635
Terreri MT, Bernardo WM, Len CA, da Silva CA, de Magalhães CM, Sacchetti SB, et al. Guidelines for the management and treatment of periodic fever syndromes familial Mediterranean fever. Rev Bras Reumatol Engl Ed. 2016;56(1):37–43.
pubmed: 27267332
doi: 10.1016/j.rbr.2015.08.006
Zemer D, Pras M, Sohar E, Modan M, Cabili S, Gafni J. Colchicine in the prevention and treatment of the amyloidosis of familial mediterranean fever. N Engl J Med. 1986;314(16):1001–05.
pubmed: 3515182
doi: 10.1056/NEJM198604173141601
Hashkes PJ, Spalding SJ, Giannini EH, Huang B, Johnson A, Park G, et al. Rilonacept for colchicine-resistant or -intolerant familial mediterranean fever: a randomized trial. Ann Intern Med. 2012;157(8):533–41.
pubmed: 23070486
doi: 10.7326/0003-4819-157-8-201210160-00003
Lancieri M, Bustaffa M, Palmeri S, Prigione I, Penco F, Papa R, et al. An update on familial mediterranean fever. Int J Mol Sci. 2023;24(11).
Özen S, Sag E, Ben-Chetrit E, Gattorno M, Gül A, Hashkes PJ, et al. Defining colchicine resistance/intolerance in patients with familial mediterranean fever: a modified-Delphi consensus approach. Rheumatology (Oxford). 2021;60(8):3799–808.
pubmed: 33331943
doi: 10.1093/rheumatology/keaa863
Agostini L, Martinon F, Burns K, McDermott MF, Hawkins PN, Tschopp J. NALP3 forms an IL-1beta-processing inflammasome with increased activity in Muckle-Wells autoinflammatory disorder. Immunity. 2004;20(3):319–25.
pubmed: 15030775
doi: 10.1016/S1074-7613(04)00046-9
Jesus AA, Goldbach-Mansky R. IL-1 blockade in autoinflammatory syndromes. Annu Rev Med. 2014;65:223–44.
pubmed: 24422572
pmcid: 4178953
doi: 10.1146/annurev-med-061512-150641
Bass AR, Chakravarty E, Akl EA, Bingham CO, Calabrese L, Cappelli LC, et al. 2022 American college of rheumatology guideline for vaccinations in patients with rheumatic and musculoskeletal diseases. Arthritis Rheumatol. 2023;75(3):333–48.
pubmed: 36597810
doi: 10.1002/art.42386
Geck L, Tascilar K, Simon D, Kleyer A, Schett G, Rech J. Anti-Interleukin-1 therapy does not affect the response to SARS-CoV-2 vaccination and infection in patients with systemic autoinflammatory diseases. J Clin Med. 2023;12(24).
Sánchez-Manubens J, Iglesias E, Anton J. Canakinumab for the treatment of hyperimmunoglobulin D syndrome. Expert Rev Clin Immunol. 2019;15(3):215–20.
pubmed: 30652926
doi: 10.1080/1744666X.2019.1571410
Berner J, van de Wetering C, Jimenez Heredia R, Rashkova C, Ferdinandusse S, Koster J, et al. Phosphomevalonate kinase deficiency expands the genetic spectrum of systemic autoinflammatory diseases. J Allergy Clin Immunol. 2023;152(4):1025–31.e2.
pubmed: 37364720
pmcid: 10549927
doi: 10.1016/j.jaci.2023.06.013
Georgin-Lavialle S, Ducharme-Benard S, Sarrabay G, Savey L, Grateau G, Hentgen V. Systemic autoinflammatory diseases: clinical state of the art. Best Pract Res Clin Rheumatol. 2020;34(4):101529.
pubmed: 32546426
doi: 10.1016/j.berh.2020.101529
Aksentijevich I, Schnappauf O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases. Nat Rev Rheumatol. 2021;17(7):405–25.
pubmed: 34035534
doi: 10.1038/s41584-021-00614-1
Cugno M, Borghi A, Marzano AV. PAPA, PASH and PAPASH syndromes: pathophysiology, presentation and treatment. Am J Clin Dermatol. 2017;18(4):555–62.
pubmed: 28236224
doi: 10.1007/s40257-017-0265-1
Rivera-Sepulveda A, Colón-Fontánez F, López M, Puig-Ramos G. Deficiency of interleukin-1 receptor antagonist: new genetic autoinflammatory disease as a diagnostic challenge for pediatricians. J Pediatr Genet. 2023;12(3):227–32.
pubmed: 37575641
doi: 10.1055/s-0041-1724113
Garg M, de Jesus AA, Chapelle D, Dancey P, Herzog R, Rivas-Chacon R, et al. Rilonacept maintains long-term inflammatory remission in patients with deficiency of the IL-1 receptor antagonist. JCI Insight. 2017;2(16).
Hull KM, Drewe E, Aksentijevich I, Singh HK, Wong K, McDermott EM, et al. The TNF receptor-associated periodic syndrome (TRAPS): emerging concepts of an autoinflammatory disorder. Medicine (Baltimore). 2002;81(5):349–68.
pubmed: 12352631
doi: 10.1097/00005792-200209000-00002
Cudrici C, Deuitch N, Aksentijevich I. Revisiting TNF receptor-associated periodic syndrome (TRAPS): current perspectives. Int J Mol Sci. 2020;21(9).
Romano M, Arici ZS, Piskin D, Alehashemi S, Aletaha D, Barron K, et al. The 2021 EULAR/American college of rheumatology points to consider for diagnosis, management and monitoring of the interleukin-1 mediated autoinflammatory diseases: cryopyrin-associated periodic syndromes, tumour necrosis factor receptor-associated periodic syndrome, mevalonate kinase deficiency, and deficiency of the interleukin-1 receptor antagonist. Arthritis Rheumatol. 2022;74(7):1102–21.
pubmed: 35621220
pmcid: 9531906
doi: 10.1002/art.42139
Yu MP, Xu XS, Zhou Q, Deuitch N, Lu MP. Haploinsufficiency of A20 (HA20): updates on the genetics, phenotype, pathogenesis and treatment. World J Pediatr. 2020;16(6):575–84.
pubmed: 31587140
doi: 10.1007/s12519-019-00288-6
Zhou Q, Wang H, Schwartz DM, Stoffels M, Park YH, Zhang Y, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease. Nat Genet. 2016;48(1):67–73.
pubmed: 26642243
doi: 10.1038/ng.3459
Perazzio SF, Allenspach EJ, Eklund KK, Varjosalo M, Shinohara MM, Torgerson TR, et al. Behçet disease (BD) and BD-like clinical phenotypes: NF-κB pathway in mucosal ulcerating diseases. Scand J Immunol. 2020;92(5):e12973.
Elhani I, Riller Q, Boursier G, Hentgen V, Rieux-Laucat F, Georgin-Lavialle S. A20 haploinsufficiency: a systematic review of 177 cases. J Invest Dermatol. 2024;144(6):1282–94.e8.
pubmed: 38128752
doi: 10.1016/j.jid.2023.12.007
Aksentijevich I, Zhou Q. NF-κB pathway in autoinflammatory diseases: dysregulation of protein modifications by ubiquitin defines a new category of autoinflammatory diseases. Front Immunol. 2017;8:399.
pubmed: 28469620
pmcid: 5395695
doi: 10.3389/fimmu.2017.00399
Badran YR, Dedeoglu F, Leyva Castillo JM, Bainter W, Ohsumi TK, Bousvaros A, et al. Human RELA haploinsufficiency results in autosomal-dominant chronic mucocutaneous ulceration. J Exp Med. 2017;214(7):1937–47.
pubmed: 28600438
pmcid: 5502421
doi: 10.1084/jem.20160724
Adeeb F, Dorris ER, Morgan NE, Lawless D, Maqsood A, Ng WL, et al. A novel RELA truncating mutation in a familial Behçet’s disease-like mucocutaneous ulcerative condition. Arthritis Rheumatol. 2021;73(3):490–97.
pubmed: 32969189
doi: 10.1002/art.41531
Lecerf K, Koboldt DC, Kuehn HS, Jayaraman V, Lee K, Mihalic Mosher T, et al. Case report and review of the literature: immune dysregulation in a large familial cohort due to a novel pathogenic RELA variant. Rheumatology (Oxford). 2022;62(1):347–59.
pubmed: 35412596
doi: 10.1093/rheumatology/keac227
Okorie CL, Nayudu K, Nambudiri VE. Cutaneous findings and treatments in deficiency of interleukin-36 receptor antagonist (DITRA): a review of the literature. Exp Dermatol. 2024;33(1):e14934.
Almeida de Jesus A, Goldbach-Mansky R. Monogenic autoinflammatory diseases: concept and clinical manifestations. Clin Immunol. 2013;147(3):155–74.
pubmed: 23711932
doi: 10.1016/j.clim.2013.03.016
Akiyama M, Takeichi T, McGrath JA, Sugiura K. Autoinflammatory keratinization diseases: an emerging concept encompassing various inflammatory keratinization disorders of the skin. J Dermatol Sci. 2018;90(2):105–11.
pubmed: 29422292
doi: 10.1016/j.jdermsci.2018.01.012
Manthiram K, Zhou Q, Aksentijevich I, Kastner DL. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation. Nat Immunol. 2017;18(8):832–42.
pubmed: 28722725
doi: 10.1038/ni.3777
Standing AS, Malinova D, Hong Y, Record J, Moulding D, Blundell MP, et al. Autoinflammatory periodic fever, immunodeficiency, and thrombocytopenia (PFIT) caused by mutation in actin-regulatory gene WDR1. J Exp Med. 2017;214(1):59–71.
pubmed: 27994071
pmcid: 5206503
doi: 10.1084/jem.20161228
Crow YJ, Stetson DB. The type I interferonopathies: 10 years on. Nat Rev Immunol. 2021;22(8):471–83.
pubmed: 34671122
pmcid: 8527296
doi: 10.1038/s41577-021-00633-9
Lebon P, Badoual J, Ponsot G, Goutières F, Hémeury-Cukier F, Aicardi J. Intrathecal synthesis of interferon-alpha in infants with progressive familial encephalopathy. J Neurol Sci. 1988;84(2-3):201–8.
Rice GI, Forte GM, Szynkiewicz M, Chase DS, Aeby A, Abdel-Hamid MS, et al. Assessment of interferon-related biomarkers in Aicardi-Goutières syndrome associated with mutations in TREX1, RNASEH2A, RNASEH2B, RNASEH2C, SAMHD1, and ADAR: a case-control study. Lancet Neurol. 2013;12(12):1159–69.
pubmed: 24183309
pmcid: 4349523
doi: 10.1016/S1474-4422(13)70258-8
Lo MS. Monogenic Lupus. Curr Rheumatol Rep. 2016;18(12):71.
pubmed: 27812953
doi: 10.1007/s11926-016-0621-9
Cetin Gedik K, Lamot L, Romano M, Demirkaya E, Piskin D, Torreggiani S, et al. The 2021 European alliance of associations for rheumatology/American college of rheumatology points to consider for diagnosis and management of autoinflammatory type I interferonopathies: CANDLE/PRAAS, SAVI, and AGS. Arthritis Rheumatol. 2022;74(5):735–51.
pubmed: 35315249
doi: 10.1002/art.42087
Crow YJ, Shetty J, Livingston JH. Treatments in Aicardi-Goutières syndrome. Dev Med Child Neurol. 2020;62(1):42–47.
pubmed: 31175662
doi: 10.1111/dmcn.14268
David C, Frémond ML. Lung inflammation in STING-associated vasculopathy with onset in infancy (SAVI). Cells. 2022;11(3).
Frémond ML, Crow YJ. STING-mediated lung inflammation and beyond. J Clin Immunol. 2021;41(3):501–14.
pubmed: 33532887
doi: 10.1007/s10875-021-00974-z
Haag SM, Gulen MF, Reymond L, Gibelin A, Abrami L, Decout A, et al. Targeting STING with covalent small-molecule inhibitors. Nature. 2018;559(7713):269–73.
Hansen AL, Buchan GJ, Rühl M, Mukai K, Salvatore SR, Ogawa E, et al. Nitro-fatty acids are formed in response to virus infection and are potent inhibitors of STING palmitoylation and signaling. Proc Natl Acad Sci U S A. 2018;115(33):E7768–E75.
pubmed: 30061387
pmcid: 6099880
doi: 10.1073/pnas.1806239115
Torrelo A, Patel S, Colmenero I, Gurbindo D, Lendínez F, Hernández A, et al. Chronic atypical neutrophilic dermatosis with lipodystrophy and elevated temperature (CANDLE) syndrome. J Am Acad Dermatol. 2010;62(3):489–95.
pubmed: 20159315
doi: 10.1016/j.jaad.2009.04.046
Arima K, Kinoshita A, Mishima H, Kanazawa N, Kaneko T, Mizushima T, et al. Proteasome assembly defect due to a proteasome subunit beta type 8 (PSMB8) mutation causes the autoinflammatory disorder, Nakajo-Nishimura syndrome. Proc Natl Acad Sci U S A. 2011;108(36):14914–19.
pubmed: 21852578
pmcid: 3169106
doi: 10.1073/pnas.1106015108
Glocker EO, Frede N, Perro M, Sebire N, Elawad M, Shah N, et al. Infant colitis–it’s in the genes. Lancet. 2010;376(9748):1272.
pubmed: 20934598
doi: 10.1016/S0140-6736(10)61008-2
Glocker EO, Kotlarz D, Boztug K, Gertz EM, Schäffer AA, Noyan F, et al. Inflammatory bowel disease and mutations affecting the interleukin-10 receptor. N Engl J Med. 2009;361(21):2033–45.
pubmed: 19890111
pmcid: 2787406
doi: 10.1056/NEJMoa0907206
Begue B, Verdier J, Rieux-Laucat F, Goulet O, Morali A, Canioni D, et al. Defective IL10 signaling defining a subgroup of patients with inflammatory bowel disease. Am J Gastroenterol. 2011;106(8):1544–55.
pubmed: 21519361
doi: 10.1038/ajg.2011.112
Kotlarz D, Marquardt B, Barøy T, Lee WS, Konnikova L, Hollizeck S, et al. Human TGF-β1 deficiency causes severe inflammatory bowel disease and encephalopathy. Nat Genet. 2018;50(3):344–48.
pubmed: 29483653
pmcid: 6309869
doi: 10.1038/s41588-018-0063-6
Boland BS, Widjaja CE, Banno A, Zhang B, Kim SH, Stoven S, et al. Immunodeficiency and autoimmune enterocolopathy linked to NFAT5 haploinsufficiency. J Immunol. 2015;194(6):2551–60.
pubmed: 25667416
doi: 10.4049/jimmunol.1401463
Lopez-Rivera DO, Castano-Jaramillo LM, Yamazaki-Nakashimada MA, Ramirez Uribe RMN, Corcuera Delgado CT, Ignorosa-Arellano KR, et al. Not enough by half: NFAT5 haploinsufficiency in two patients with Epstein-Barr virus susceptibility. Front Immunol. 2022;13:959733.
pubmed: 36238298
pmcid: 9552184
doi: 10.3389/fimmu.2022.959733
Ferguson PJ, Chen S, Tayeh MK, Ochoa L, Leal SM, Pelet A, et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). J Med Genet. 2005;42(7):551–57.
pubmed: 15994876
pmcid: 1736104
doi: 10.1136/jmg.2005.030759
van Well GTJ, Kant B, van Nistelrooij A, Sirma Ekmekci S, Henriet SV, Hoppenreijs E, et al. Phenotypic variability including Behçet’s disease-like manifestations in DADA2 patients due to a homozygous c.973-2A>G splice site mutation. Clin Exp Rheumatol. 2019;37 Suppl 121(6):142–46.
pubmed: 31856934
Deuitch NT, Yang D, Lee PY, Yu X, Moura NS, Schnappauf O, et al. TNF inhibition in vasculitis management in adenosine deaminase 2 deficiency (DADA2). J Allergy Clin Immunol. 2022;149(5):1812–6.e6.
pubmed: 34780847
doi: 10.1016/j.jaci.2021.10.030
Ombrello AK, Qin J, Hoffmann PM, Kumar P, Stone D, Jones A, et al. Treatment strategies for deficiency of adenosine deaminase 2. N Engl J Med. 2019;380(16):1582–84.
pubmed: 30995379
pmcid: 7372950
doi: 10.1056/NEJMc1801927
Zhang B, Xu N, Chen J, Zhang S, Huang X, Shen M, et al. Treatment and outcome in deficiency of adenosine deaminase 2: a literature review. J Investig Allergol Clin Immunol. 2021;32(1):13–22.
pubmed: 34489224
doi: 10.18176/jiaci.0748
Lee PY. Vasculopathy, immunodeficiency, and bone marrow failure: the intriguing syndrome caused by deficiency of adenosine deaminase 2. Front Pediatr. 2018;6:282.
pubmed: 30406060
pmcid: 6200955
doi: 10.3389/fped.2018.00282
Esatoglu SN, Hatemi G, Salihoglu A, Hatemi I, Soysal T, Celik AF. A reappraisal of the association between Behçet’s disease, myelodysplastic syndrome and the presence of trisomy 8: a systematic literature review. Clin Exp Rheumatol. 2015;33(6 Suppl 94):S145–51.
pubmed: 25664843
Manthiram K, Preite S, Dedeoglu F, Demir S, Ozen S, Edwards KM, et al. Common genetic susceptibility loci link PFAPA syndrome, Behçet’s disease, and recurrent aphthous stomatitis. Proc Natl Acad Sci U S A. 2020;117(25):14405–11.
pubmed: 32518111
pmcid: 7322016
doi: 10.1073/pnas.2002051117
Manthiram K. What is PFAPA syndrome? Genetic clues about the pathogenesis. Curr Opin Rheumatol. 2023;35(6):423–28.
pubmed: 37467064
doi: 10.1097/BOR.0000000000000956
Amarilyo G, Harel L, Abu Ahmad S, Abu Rumi M, Brik R, Hezkelo N, et al. Periodic fever, aphthous stomatitis, pharyngitis, and adenitis syndrome - is it related to ethnicity? An Israeli multicenter cohort study. J Pediatr. 2020;227:268–73.
pubmed: 32805260
doi: 10.1016/j.jpeds.2020.08.033
Thomas KT, Feder HM, Lawton AR, Edwards KM. Periodic fever syndrome in children. J Pediatr. 1999;135(1):15–21.
pubmed: 10393598
doi: 10.1016/S0022-3476(99)70321-5
Marshall GS, Edwards KM, Lawton AR. PFAPA syndrome. Pediatr Infect Dis J. 1989;8(9):658–59.
pubmed: 2797967
doi: 10.1097/00006454-198909000-00026
Vanoni F, Caorsi R, Aeby S, Cochard M, Antón J, Berg S, et al. Towards a new set of classification criteria for PFAPA syndrome. Pediatr Rheumatol Online J. 2018;16(1):60.
pubmed: 30241480
pmcid: 6151014
doi: 10.1186/s12969-018-0277-2
Gattorno M, Hofer M, Federici S, Vanoni F, Bovis F, Aksentijevich I, et al. Classification criteria for autoinflammatory recurrent fevers. Ann Rheum Dis. 2019;78(8):1025–32.
pubmed: 31018962
doi: 10.1136/annrheumdis-2019-215048
Amarilyo G, Rothman D, Manthiram K, Edwards KM, Li SC, Marshall GS, et al. Consensus treatment plans for periodic fever, aphthous stomatitis, pharyngitis and adenitis syndrome (PFAPA): a framework to evaluate treatment responses from the childhood arthritis and rheumatology research alliance (CARRA) PFAPA work group. Pediatr Rheumatol Online J. 2020;18(1):31.
pubmed: 32293478
pmcid: 7157990
doi: 10.1186/s12969-020-00424-x
Beck DB, Ferrada MA, Sikora KA, Ombrello AK, Collins JC, Pei W, et al. Somatic mutations in. N Engl J Med. 2020;383(27):2628–38.
pubmed: 33108101
pmcid: 7847551
doi: 10.1056/NEJMoa2026834
Beck DB, Werner A, Kastner DL, Aksentijevich I. Disorders of ubiquitylation: unchained inflammation. Nat Rev Rheumatol. 2022;18(8):435–47.
pubmed: 35523963
pmcid: 9075716
doi: 10.1038/s41584-022-00778-4
van der Made CI, Potjewijd J, Hoogstins A, Willems HPJ, Kwakernaak AJ, de Sevaux RGL, et al. Adult-onset autoinflammation caused by somatic mutations in UBA1: a Dutch case series of patients with VEXAS. J Allergy Clin Immunol. 2022;149(1):432–9.e4.
pubmed: 34048852
doi: 10.1016/j.jaci.2021.05.014
Wilke MVMB, Morava-Kozicz E, Koster MJ, Schmitz CT, Foster SK, Patnaik M, et al. Exome sequencing can misread high variant allele fraction of somatic variants in UBA1 as hemizygous in VEXAS syndrome: a case report. BMC Rheumatol. 2022;6(1):54.
pubmed: 36038944
pmcid: 9426024
doi: 10.1186/s41927-022-00281-z
Zhang Y, Dong X, Wang H. VEXAS syndrome-review. Glob Med Genet. 2023;10(3):133–43.
pubmed: 37501758
pmcid: 10370470
doi: 10.1055/s-0043-1770958
Templé M, Duroyon E, Croizier C, Rossignol J, Huet T, Friedrich C, et al. Atypical splice-site mutations causing VEXAS syndrome. Rheumatology (Oxford). 2021;60(12):e435–e7.
pubmed: 34213531
doi: 10.1093/rheumatology/keab524
Poulter JA, Collins JC, Cargo C, De Tute RM, Evans P, Ospina Cardona D, et al. Novel somatic mutations in UBA1 as a cause of VEXAS syndrome. Blood. 2021;137(26):3676–81.
pubmed: 33690815
pmcid: 8462400
doi: 10.1182/blood.2020010286
Hetz C. The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 2012;13(2):89–102.
pubmed: 22251901
doi: 10.1038/nrm3270
Al-Hakim A, Savic S. An update on VEXAS syndrome. Expert Rev Clin Immunol. 2023;19(2):203–15.
pubmed: 36537591
doi: 10.1080/1744666X.2023.2157262
Ferrada MA, Savic S, Cardona DO, Collins JC, Alessi H, Gutierrez-Rodrigues F, et al. Translation of cytoplasmic UBA1 contributes to VEXAS syndrome pathogenesis. Blood. 2022;140(13):1496–506.
pubmed: 35793467
pmcid: 9523373
doi: 10.1182/blood.2022016985
Georgin-Lavialle S, Terrier B, Guedon AF, Heiblig M, Comont T, Lazaro E, et al. Further characterization of clinical and laboratory features in VEXAS syndrome: large-scale analysis of a multicentre case series of 116 French patients. Br J Dermatol. 2022;186(3):564–74.
pubmed: 34632574
doi: 10.1111/bjd.20805
Beck DB, Bodian DL, Shah V, Mirshahi UL, Kim J, Ding Y, et al. Estimated prevalence and clinical manifestations of UBA1 variants associated with VEXAS syndrome in a clinical population. JAMA. 2023;329(4):318–24.
pubmed: 36692560
pmcid: 10408261
doi: 10.1001/jama.2022.24836
Wang Y, Wang J, Zheng W, Zhang J, Jin T, Tao P, et al. Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design. Immunity. 2023;56(7):1485–501.e7.
pubmed: 37315560
doi: 10.1016/j.immuni.2023.05.014
Furer V, Kishimoto M, Tsuji S, Taniguchi Y, Ishihara Y, Tomita T, et al. The diagnosis and treatment of adult patients with SAPHO syndrome: controversies revealed in a multidisciplinary international survey of physicians. Rheumatol Ther. 2020;7(4):883–91.
pubmed: 32974863
pmcid: 7695776
doi: 10.1007/s40744-020-00235-2
Kishimoto M, Taniguchi Y, Tsuji S, Ishihara Y, Deshpande GA, Maeda K, et al. SAPHO syndrome and pustulotic arthro-osteitis. Mod Rheumatol. 2022;32(4):665–74.
pubmed: 34967407
doi: 10.1093/mr/roab103
Girschick H, Finetti M, Orlando F, Schalm S, Insalaco A, Ganser G, et al. The multifaceted presentation of chronic recurrent multifocal osteomyelitis: a series of 486 cases from the Eurofever international registry. Rheumatology (Oxford). 2018;57(7):1203–11.
pubmed: 29596638
doi: 10.1093/rheumatology/key058
L S. Lésions urticariennes chroniques permanentes (érythème pétaloïde?). Journées Dermatologiques d’Angers. 1972;Cas Clinique:N°46b.
Gusdorf L, Lipsker D. Schnitzler syndrome: a review. Curr Rheumatol Rep. 2017;19(8):46.
pubmed: 28718061
doi: 10.1007/s11926-017-0673-5
Betrains A, Staels F, Schrijvers R, Meyts I, Humblet-Baron S, De Langhe E, et al. Systemic autoinflammatory disease in adults. Autoimmun Rev. 2021;20(4):102774.
pubmed: 33609798
doi: 10.1016/j.autrev.2021.102774
Ruscitti P, Cantarini L, Nigrovic PA, McGonagle D, Giacomelli R. Recent advances and evolving concepts in Still’s disease. Nat Rev Rheumatol. 2024;20(2):116–32.
pubmed: 38212542
doi: 10.1038/s41584-023-01065-6
Cordeiro RA, Antonelli IPB, Giardini HAM. Adult-onset Still’s disease with ankylosis of the distal interphalangeal joints: beyond psoriatic arthritis. Clin Exp Rheumatol. 2023;41(10):2126–27.
pubmed: 37470244
Efthimiou P, Kontzias A, Hur P, Rodha K, Ramakrishna GS, Nakasato P. Adult-onset Still’s disease in focus: clinical manifestations, diagnosis, treatment, and unmet needs in the era of targeted therapies. Semin Arthritis Rheum. 2021;51(4):858–74.
pubmed: 34175791
doi: 10.1016/j.semarthrit.2021.06.004