Assessment of the Safety and Exopolysaccharide Synthesis Capabilities of Bacillus amyloliquefaciens D189 Based on Complete Genome and Phenotype Analysis.


Journal

Current microbiology
ISSN: 1432-0991
Titre abrégé: Curr Microbiol
Pays: United States
ID NLM: 7808448

Informations de publication

Date de publication:
03 Sep 2024
Historique:
received: 22 02 2024
accepted: 20 06 2024
medline: 3 9 2024
pubmed: 3 9 2024
entrez: 3 9 2024
Statut: epublish

Résumé

Exopolysaccharides (EPS) are natural macromolecular carbohydrates with good functional activity and physiological activities, which can be utilized as an emulsifier, viscosity enhancer, stabilizer, gelling agent, and water retention agent in a wide range of food products. In this study, the whole genome of Bacillus amyloliquefaciens D189, an EPS-producing bacteria, was sequenced. The result showed that D189 contains a single, circular chromosome of 3,963,356 bp with an average GC content of 45.74% and 3996 coding genes. The gene annotation results showed that D189 is a potentially safe strain and confirmed to be safe associated with hemolytic assay, and antibiotic resistance test. Meanwhile, D189 genome possessed 240 genes related to carbohydrate metabolism. More importantly, D189 could transport 9 sugars and contained a complete biosynthetic pathway for 8 nucleotide sugars. Based on the validation experiments, strain D189 could metabolize 8 sugars (glucose, sucrose, trehalose, fructose, cellobiose, maltose, mannitol, and N-acetyl-D-glucosamine) to produce EPS, with the highest yield of 1.212 g/L when sucrose was the carbon source. Therefore, the whole genome sequencing preliminarily elucidated the physiological mechanism of EPS, providing several pathways for engineering D189 to further enhance the yield of EPS.

Identifiants

pubmed: 39225770
doi: 10.1007/s00284-024-03777-8
pii: 10.1007/s00284-024-03777-8
doi:

Substances chimiques

Polysaccharides, Bacterial 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

342

Subventions

Organisme : National Natural Science Foundation of China
ID : 32160558
Organisme : Key projects in Guangxi
ID : 2019GXNSFDA245008

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.

Références

Barcelos MCS, Vespermann KAC, Pelissari FM, Molina G (2019) Current status of biotechnological production and applications of microbial exopolysaccharides. Crit Rev Food Sci Nutr 60(40):1–21
Netrusov AI, Liyaskina EV, Kurgaeva IV, Liyaskina AU, Yang G, Revin VV (2023) Exopolysaccharides producing bacteria: a review. Microorganisms. https://doi.org/10.3390/microorganisms11061541
doi: 10.3390/microorganisms11061541 pubmed: 37375041 pmcid: 10304161
Bagnol R, Grijpma D, Eglin D, Moriarty TF (2022) The production and application of bacterial exopolysaccharides as biomaterials for bone regeneration. Carbohydr Polym 291:119550. https://doi.org/10.1016/j.carbpol.2022.119550
doi: 10.1016/j.carbpol.2022.119550 pubmed: 35698380
Sun X, Zhang J (2021) Bacterial exopolysaccharides: chemical structures, gene clusters and genetic engineering. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2021.01.139
doi: 10.1016/j.ijbiomac.2021.01.139 pubmed: 34973980
Li Q, YuanKe C, YunxiaLiu X, Shubo, (2020) Production of welan gum from cane molasses by Sphingomonas sp. FM01. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2020.116485
doi: 10.1016/j.carbpol.2020.116485 pubmed: 33593528 pmcid: 7581413
Miliane DOJ, Adamoli AS, Veiga BCA (2018) Rheological, textural and emulsifying properties of an exopolysaccharide produced by Mesorhizobium loti grown on a crude glycerol-based medium. Int J Biol Macromol 120:2180–2187
doi: 10.1016/j.ijbiomac.2018.06.158
Tarannum N, Hossain TJ, Ali F, Das T, Dhar K, Nafiz IH (2023) Antioxidant, antimicrobial and emulsification properties of exopolysaccharides from lactic acid bacteria of bovine milk: Insights from biochemical and genomic analysis. Lwt. https://doi.org/10.1016/j.lwt.2023.115263
doi: 10.1016/j.lwt.2023.115263
Wang N, Jia G, Wang C, Chen M, Xie F, Nepovinnykh NV, Goff HD, Guo Q (2020) Structural characterisation and immunomodulatory activity of exopolysaccharides from liquid fermentation of Monascus purpureus (Hong Qu). Food Hydrocoll. https://doi.org/10.1016/j.foodhyd.2019.105636
doi: 10.1016/j.foodhyd.2019.105636
Kavitake D, Tiwari S, Shah IA, Devi PB, Delattre C, Reddy GB, Shetty PH (2023) Antipathogenic potentials of exopolysaccharides produced by lactic acid bacteria and their food and health applications. Food Control. https://doi.org/10.1016/j.foodcont.2023.109850
doi: 10.1016/j.foodcont.2023.109850
Rana S, Upadhyay LSB (2020) Microbial exopolysaccharides: synthesis pathways, types and their commercial applications. Int J Biol Macromol 157:577–583. https://doi.org/10.1016/j.ijbiomac.2020.04.084
doi: 10.1016/j.ijbiomac.2020.04.084 pubmed: 32304790
Chen YC, Huang SD, Tu JH, Yu JS, Cheng HL (2019) Exopolysaccharides of Bacillus amyloliquefaciens modulate glycemic level in mice and promote glucose uptake of cells through the activation of Akt. Int J Biol Macromol. https://doi.org/10.1016/j.ijbiomac.2019.08.239
doi: 10.1016/j.ijbiomac.2019.08.239 pubmed: 31899246 pmcid: 8985420
Yusupova YR, Skripnikova VS, Kivero AD, Zakataeva NP (2020) Expression and purification of the 5′-nucleotidase YitU from Bacillus species: its enzymatic properties and possible applications in biotechnology. Appl Microbiol Biotechnol 104(7):2957–2972
doi: 10.1007/s00253-020-10428-y pubmed: 32040605 pmcid: 7062661
Malick A, Khodaei N, Benkerroum N, Karboune S (2017) Production of exopolysaccharides by selected Bacillus strains: optimization of media composition to maximize the yield and structural characterization. Int J Biol Macromol 102:539–549. https://doi.org/10.1016/j.ijbiomac.2017.03.151
doi: 10.1016/j.ijbiomac.2017.03.151 pubmed: 28363654
Zhang Y, Dai X, Jin H, Man C, Jiang Y (2021) The effect of optimized carbon source on the synthesis and composition of exopolysaccharides produced by Lactobacillus paracasei. J Dairy Sci 104(4):4023–4032. https://doi.org/10.3168/jds.2020-19448
doi: 10.3168/jds.2020-19448 pubmed: 33551164
Ejaz H, Sultan M, Qamar MU, Junaid K, Rasool N, Alanazi A, Alruways MW, Mazhari BBZ, Alruwaili Y, Bukhari SNA (2023) Antibacterial efficacy of indigenous Pakistani honey against extensively drug-resistant clinical isolates of Salmonella enterica serovar Typhi: an alternative option to combat antimicrobial resistance. BMC Complem Med Ther 23(1):1–10
doi: 10.1186/s12906-023-03870-8
Dubois M, Gilles KA, Hamilton JK, Rebers PA, Smith FJC (1965) Colorimetric method for determination of sugars and related substances. Anal 28:350–356
Zhao X, Liang Q, Song X, Zhang Y (2023) Whole genome sequence of Lactiplantibacillus plantarum MC5 and comparative analysis of eps gene clusters. Front Microbiol. https://doi.org/10.3389/fmicb.2023.1146566
doi: 10.3389/fmicb.2023.1146566 pubmed: 38322760 pmcid: 10773919
Liu H, Prajapati V, Prajapati S, Bais H, Lu J (2021) Comparative genome analysis of Bacillus amyloliquefaciens focusing on phylogenomics, functional traits, and prevalence of antimicrobial and virulence genes. Fron Genetics. https://doi.org/10.3389/fgene.2021.724217
doi: 10.3389/fgene.2021.724217
Tóth AG, Judge MF, Nagy SÁ, Papp M, Solymosi N (2023) A survey on antimicrobial resistance genes of frequently used probiotic bacteria, 1901 to 2022. Eurosurveillance 28(14):2200272
doi: 10.2807/1560-7917.ES.2023.28.14.2200272 pubmed: 37022212 pmcid: 10283461
Leitão JH (2020) Microbial virulence factors. Int J Mol Sci. https://doi.org/10.3390/ijms21155320
doi: 10.3390/ijms21155320 pubmed: 33348812 pmcid: 7766527
Wu J-J, Zhou Q-Y, Liu D-M, Xiong J, Liang M-H, Tang J, Xu Y-Q (2023) Evaluation of the safety and probiotic properties of Lactobacillus gasseri LGZ1029 based on whole genome analysis. Lwt. https://doi.org/10.1016/j.lwt.2023.114759
doi: 10.1016/j.lwt.2023.114759
Lu J, Mao Y, Ma T, Liu X, Cheng X, Bai Y, Li S (2023) Screening and genome analysis of lactic acid bacteria with high exopolysaccharide production and good probiotic properties. Food Biosci. https://doi.org/10.1016/j.fbio.2023.103211
doi: 10.1016/j.fbio.2023.103211
Song J, Jia YX, Su Y, Zhang XY, Tu LN, Nie ZQ, Zheng Y, Wang M (2020) Initial analysis on the characteristics and synthesis of exopolysaccharides from Sclerotium rolfsii with different sugars as carbon sources. Polymers. https://doi.org/10.3390/polym12020348
doi: 10.3390/polym12020348 pubmed: 33374397 pmcid: 7796291
Bai J, XueweiChen Y, ZhengxingLiu S, Chunping, (2020) Effect of carbon source on properties and bioactivities of exopolysaccharide produced by Trametes ochracea (Agaricomycetes). Int J Med Mushrooms. https://doi.org/10.1615/IntJMedMushrooms.2020033984
doi: 10.1615/IntJMedMushrooms.2020033984 pubmed: 33463933
Veldman W, Liberato MV, Souza VP, Almeida VM, Marana SR, Tastan Bishop Ö, Polikarpov I (2021) Differences in Gluco and Galacto substrate-binding interactions in a dual 6Pβ-glucosidase/6Pβ-galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis. J Chem Inf Model 61(9):4554–4570. https://doi.org/10.1021/acs.jcim.1c00413
doi: 10.1021/acs.jcim.1c00413 pubmed: 34423980
Wang S, Wang Q, Zhou Y, Lu Z, Zhang G, Ma Y (2017) A new GH13 α-glucosidase from alkaliphilic Bacillus pseudofirmus 703 with both exo-α-l, 4-glucosidase and oligo-l, 6-glucosidase activities toward amylopectin. Int J Biol Macromol 101:973–982. https://doi.org/10.1016/j.ijbiomac.2017.03.129
doi: 10.1016/j.ijbiomac.2017.03.129 pubmed: 28366860
Xu Y-Q, Hu J-S, Liu D-M, Tang J, Liang M-H, Wu J-J, Xiong J (2023) Assessment of the safety and metabolism characteristics of Streptococcus thermophilus DMST-H2 based on complete genome and phenotype analysis. Lwt. https://doi.org/10.1016/j.lwt.2023.114907
doi: 10.1016/j.lwt.2023.114907
Li B, Ding X, Evivie SE, Jin D, Meng Y, Huo G, Liu F (2018) Short communication: genomic and phenotypic analyses of exopolysaccharides produced by Streptococcus thermophilus KLDS SM. J Dairy Sci 101(1):106–112
doi: 10.3168/jds.2017-13534 pubmed: 29055533
Xiong ZQ, Kong LH, Lai FH, Xia YJ, Liu JC, Li QY, Ai LZJJoDS, (2019) Genomic and phenotypic analyses of exopolysaccharide biosynthesis in Streptococcus thermophiles. J Dairy Sci. https://doi.org/10.3168/jds.2018-15572
doi: 10.3168/jds.2018-15572 pubmed: 31733872
Hudson JA, Frewer LJ, Jones G, Brereton PA, Whittingham MJ, Stewart G (2017) The agri-food chain and antimicrobial resistance: a review. Trends Food Sci Technol. https://doi.org/10.1016/j.tifs.2017.09.007
doi: 10.1016/j.tifs.2017.09.007
Zhang L-j, Zeng Y, Zhang Y, Song H, Jia S-r, Sun Y-x (2015) Optimization of fermentation conditions for production of exopolysaccharide by Bacillus amyloliquefaciens PB6. Sci Technol Food Industry 36(9):185–189
Jian Z, Zeng L, Xu T, Sun S, Yan S, Yang L, Huang Y, Jia J, Dou T (2021) Antibiotic resistance genes in bacteria: occurrence, spread, and control. J Basic Microbiol 61(12):1049–1070. https://doi.org/10.1002/jobm.202100201
doi: 10.1002/jobm.202100201 pubmed: 34651331
Alav I, Buckner MMC (2023) Non-antibiotic compounds associated with humans and the environment can promote horizontal transfer of antimicrobial resistance genes. Crit Rev Microbiol. https://doi.org/10.1080/1040841x.2023.2233603
doi: 10.1080/1040841x.2023.2233603 pubmed: 37462915
Saroj DB, Gupta AK (2020) Genome based safety assessment for Bacillus coagulans strain LBSC (DSM 17654) for probiotic application. Int J Food Microbiol. https://doi.org/10.1016/j.ijfoodmicro.2020.108523
doi: 10.1016/j.ijfoodmicro.2020.108523 pubmed: 31964505
Vandana DS (2022) Genetic regulation, biosynthesis and applications of extracellular polysaccharides of the biofilm matrix of bacteria. Carbohydr Polym. https://doi.org/10.1016/j.carbpol.2022.119536
doi: 10.1016/j.carbpol.2022.119536 pubmed: 35698329
Bekar F, Kamiloglu A (2023) Effect of different carbon sources on exopolysaccharide production of Lactiplantibacillus pentosus KS27 and optimization of production conditions using Box-Behnken designing. Biomass Conver Biorefinery. https://doi.org/10.1007/s13399-023-04545-7
doi: 10.1007/s13399-023-04545-7
He H, Li Y, Fang M, Li T, Liang Y, Mei YJ (2021) Carbon source affects synthesis structures, and activities of mycelial polysaccharides from medicinal FungusInonotus obliquus. J Microbiol Biotechnol 31(6):855–866
doi: 10.4014/jmb.2102.02006 pubmed: 33879638 pmcid: 9705997
Li L-Q, Chen X, Zhu J, Zhang S, Chen S-Q, Liu X, Li L, Yan J-K (2023) Advances and challenges in interaction between heteroglycans and bifidobacterium: utilization strategies, intestinal health and future perspectives. Trends Food Sci Technol 134:112–122. https://doi.org/10.1016/j.tifs.2023.02.018
doi: 10.1016/j.tifs.2023.02.018
Wang J, Goh KM, Salem DR, Sani RK (2019) Genome analysis of a thermophilic exopolysaccharide-producing bacterium - Geobacillus sp. WSUCF1. Sci Rep. https://doi.org/10.1038/s41598-018-36983-z
doi: 10.1038/s41598-018-36983-z pubmed: 31892728 pmcid: 6938521
Deka P, Goswami G, Das P, Gautom T, Barooah M (2020) Bacterial exopolysaccharide promotes acid tolerance in Bacillus amyloliquefaciens and improves soil aggregation. Mol Biol Rep. https://doi.org/10.1007/s11033-018-4566-0
doi: 10.1007/s11033-018-4566-0
Li J, Feng S, Yu L, Zhao J, Tian F, Chen W, Zhai Q (2022) Capsular polysaccarides of probiotics and their immunomodulatory roles. Food Sci Human Wellness 11(5):1111–1120
doi: 10.1016/j.fshw.2022.04.003
Cui Y, Dong S, Qu X (2023) New progress in the identifying regulatory factors of exopolysaccharide synthesis in lactic acid bacteria. World J Microbiol Biotechnol. https://doi.org/10.1007/s11274-023-03756-4
doi: 10.1007/s11274-023-03756-4 pubmed: 38057589

Auteurs

Wenfeng Mo (W)

College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Hailin He (H)

College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Yifei Mo (Y)

College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Yongyi Lin (Y)

College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Xiaowen Ye (X)

College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China.

Li Huang (L)

College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China. huangli1126@gxu.edu.cn.

Shubo Li (S)

College of Light Industry and Food Engineering, Guangxi University, Nanning, 530004, China. shubo1207@gxu.edu.cn.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Coal Metagenome Phylogeny Bacteria Genome, Bacterial
Genome, Viral Ralstonia Composting Solanum lycopersicum Bacteriophages
Animals Natural Killer T-Cells Mice Adipose Tissue Lipid Metabolism

Classifications MeSH