Histones and histone variant families in prokaryotes.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
11 Sep 2024
11 Sep 2024
Historique:
received:
10
07
2023
accepted:
30
08
2024
medline:
12
9
2024
pubmed:
12
9
2024
entrez:
11
9
2024
Statut:
epublish
Résumé
Histones are important chromatin-organizing proteins in eukaryotes and archaea. They form superhelical structures around which DNA is wrapped. Recent studies have shown that some archaea and bacteria contain alternative histones that exhibit different DNA binding properties, in addition to highly divergent sequences. However, the vast majority of these histones are identified in metagenomes and thus are difficult to study in vivo. The recent revolutionary breakthroughs in computational protein structure prediction by AlphaFold2 and RoseTTAfold allow for unprecedented insights into the potential function and structure of previously uncharacterized proteins. Here, we categorize the prokaryotic histone space into 17 distinct groups based on AlphaFold2 predictions. We identify a superfamily of histones, termed α3 histones, which are common in archaea and present in several bacteria. Importantly, we establish the existence of a large family of histones throughout archaea and in some bacteriophages that, instead of wrapping DNA, bridge DNA, thereby diverging from conventional nucleosomal histones.
Identifiants
pubmed: 39261503
doi: 10.1038/s41467-024-52337-y
pii: 10.1038/s41467-024-52337-y
doi:
Substances chimiques
Histones
0
Nucleosomes
0
Archaeal Proteins
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
7950Subventions
Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
ID : OCENW.GROOT.2019.012
Informations de copyright
© 2024. The Author(s).
Références
Luijsterburg, M. S., White, M. F., Driel, R. V. & Dame, R. T. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit. Rev. Biochem. Mol. Biol. 9238, 393–418 (2009).
Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).
pubmed: 9305837
doi: 10.1038/38444
Zhao, H. et al. The role of cryptic ancestral symmetry in histone folding mechanisms across Eukarya and Archaea. PLOS Comput. Biol. 20, e1011721 (2024).
pubmed: 38181064
pmcid: 10796010
doi: 10.1371/journal.pcbi.1011721
Sandman, K., Krzycki, J. A., Dobrinski, B., Lurz, R. & Reeve, J. N. HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proceedings of the National Academy of Sciences of the United States of America (1990).
Sandman, K., Grayling, R. A., Dobrinski, B., Lurz, R. & Reeve, J. N. Growth-phase-dependent synthesis of histones in the archaeon Methanothermus fervidus. Proc. Natl. Acad. Sci. USA 91, 12624–12628 (1994).
pubmed: 7809089
pmcid: 45491
doi: 10.1073/pnas.91.26.12624
Starich, M. R., Sandman, K., Reeve, J. N. & Summers, M. F. NMR structure of HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone. J. Mol. Biol. 255, 187–203 (1996).
pubmed: 8568866
doi: 10.1006/jmbi.1996.0016
Decanniere, K., Sandman, K., Reeve, J. N. & Heinemann, U. Crystallization and preliminary X-ray characterization of the Methanothermus fervidus histones HMfA and HMfB. Proteins Struct. Funct. Genet. 24, 269–271 (1996).
pubmed: 8820495
doi: 10.1002/(SICI)1097-0134(199602)24:2<269::AID-PROT16>3.0.CO;2-L
Higashibata, H., Fujiwara, S., Takagi, M. & Imanaka, T. Analysis of DNA compaction profile and intracellular contents of archaeal histones from Pyrococcus kodakaraensis KOD1. Biochem. Biophys. Res. Commun. 258, 416–424 (1999).
pubmed: 10329402
doi: 10.1006/bbrc.1999.0533
Decanniere, K., Babu, A. M., Sandman, K., Reeve, J. N. & Heinemann, U. Crystal structures of recombinant histones HMfA and HMfB, from the hyperthermophilic archaeon Methanothermus fervidus. J. Mol. Biol. 303, 35–47 (2000).
pubmed: 11021968
doi: 10.1006/jmbi.2000.4104
Soares, D. J., Sandman, K. & Reeve, J. N. Mutational analysis of archaeal histone-DNA interactions. J. Mol. Biol. 297, 39–47 (2000).
pubmed: 10704305
doi: 10.1006/jmbi.2000.3546
Čuboňová, L. et al. An archaeal histone is required for transformation of Thermococcus kodakarensis. J. Bacteriol. 194, 6864–6874 (2012).
pmcid: 3510624
doi: 10.1128/JB.01523-12
Hocher, A. & Warnecke, T. Nucleosomes at the Dawn of Eukaryotes. Genome Biol. Evol. 16, evae029 (2024).
pubmed: 38366053
pmcid: 10919886
doi: 10.1093/gbe/evae029
Mattiroli, F. et al. Structure of histone-based chromatin in Archaea. Science 357, 609–612 (2017).
pubmed: 28798133
pmcid: 5747315
doi: 10.1126/science.aaj1849
Henneman, B. & Dame, R. T. Archaeal histones: dynamic and versatile genome architects. AIMS Microbiol. 1, 72–81 (2015).
doi: 10.3934/microbiol.2015.1.72
Henneman, B., van Emmerik, C., van Ingen, H. & Dame, R. T. Structure and function of archaeal histones. PLoS Genet. 14, 1–21 (2018).
doi: 10.1371/journal.pgen.1007582
Henneman, B. et al. Mechanical and structural properties of archaeal hypernucleosomes. Nucleic Acids Res. 49, 4338–4349 (2021).
pubmed: 33341892
doi: 10.1093/nar/gkaa1196
Bailey, K. A., Pereira, S. L., Widom, J. & Reeve, J. N. Archaeal histone selection of nucleosome positioning sequences and the procaryotic origin of histone-dependent genome evolution. J. Mol. Biol. 303, 25–34 (2000).
Erkelens, A. M., Henneman, B., Valk, R. A. V. D., Kirolos, N. C. S. & Dame, R. T. Specific DNA binding of archaeal histones HMfA and HMfB. Front. Microbiol. 14, 1166608 (2023).
Ofer, S. et al. DNA-bridging by an archaeal histone variant via a unique tetramerisation interface. Commun. Biol. 6, 1–16 (2023).
doi: 10.1038/s42003-023-05348-2
Dame, R. T., Rashid, F. Z. M. & Grainger, D. C. Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat. Rev. Genet. 21, 227–242 (2020).
pubmed: 31767998
doi: 10.1038/s41576-019-0185-4
Alva, V. & Lupas, A. N. Histones predate the split between bacteria and archaea. Bioinformatics 35, 2349–2353 (2019).
pubmed: 30520969
doi: 10.1093/bioinformatics/bty1000
Talbert, P. B., Armache, K. J. & Henikoff, S. Viral histones: pickpocket’s prize or primordial progenitor? Epigenet. Chrom. 15, 1–20 (2022).
Liu, Y. et al. Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell 184, 4237–4250.e19 (2021).
pubmed: 34297924
pmcid: 8357426
doi: 10.1016/j.cell.2021.06.032
Bryson, T. D. et al. A giant virus genome is densely packaged by stable nucleosomes within virions. Mol. Cell 82, 4458–4470.e5 (2022).
pubmed: 36370708
doi: 10.1016/j.molcel.2022.10.020
Hocher, A. et al. Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. Nat. Microbiol. https://www.nature.com/articles/s41564-023-01492-x (2023).
Hu, Y. et al. Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae485 (2024).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844
pmcid: 8371605
doi: 10.1038/s41586-021-03819-2
Evans, R. et al. Protein complex prediction with alphafold-multimer. bioRxiv https://www.biorxiv.org/content/early/2021/10/04/2021.10.04.463034.full.pdf (2021).
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
pubmed: 34282049
pmcid: 7612213
doi: 10.1126/science.abj8754
Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).
pubmed: 33156333
doi: 10.1093/nar/gkaa977
Bateman, A. et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
doi: 10.1093/nar/gkaa1100
Frickey, T. & Lupas, A. CLANS: A Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704 (2004).
pubmed: 15284097
doi: 10.1093/bioinformatics/bth444
Takayanagi, S. et al. Chromosomal structure of the halophilic archaebacterium Halobacterium salinarium. J. Bacteriol. 174, 7207–7216 (1992).
pubmed: 1429445
pmcid: 207413
doi: 10.1128/jb.174.22.7207-7216.1992
Ammar, R. et al. Chromatin is an ancient innovation conserved between Archaea and Eukarya. eLife 2012, 1–11 (2012).
Liu, J. et al. Structural insight into binding of the ZZ domain of HERC2 to histone H3 and SUMO1. Structure 28, 1225–1230.e3 (2020).
pubmed: 32726574
doi: 10.1016/j.str.2020.07.003
Zhang, Y. et al. The ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone H3. Nat. Struct. Mol. Biol. 25, 841–849 (2018).
pubmed: 30150647
pmcid: 6482957
doi: 10.1038/s41594-018-0114-9
Mi, W. et al. The ZZ-type zinc finger of ZZZ3 modulates the ATAC complex-mediated histone acetylation and gene activation. Nat. Commun. 9, 1–9 (2018).
doi: 10.1038/s41467-018-06247-5
Sondermann, H., Soisson, S. M., Bar-Sagi, D. & Kuriyan, J. Tandem histone folds in the structure of the N-terminal segment of the Ras activator son of sevenless. Structure 11, 1583–1593 (2003).
pubmed: 14656442
doi: 10.1016/j.str.2003.10.015
Sondermann, H., Nagar, B., Bar-Sagi, D. & Kuriyan, J. Computational docking and solution x-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator son of sevenless. Proc. Natl. Acad. Sci. USA 102, 16632–16637 (2005).
pubmed: 16267129
pmcid: 1276615
doi: 10.1073/pnas.0508315102
Gureasko, J. et al. Role of the histone domain in the autoinhibition and activation of the Ras activator Son of Sevenless. Proc. Natl. Acad. Sci. USA 107, 3430–3435 (2010).
pubmed: 20133692
pmcid: 2816639
doi: 10.1073/pnas.0913915107
Briggs, G. S. et al. Ring structure of the Escherichia coli DNA-binding protein RdgC associated with recombination and replication fork repair. J. Biol. Chem. 282, 12353–12357 (2007).
pubmed: 17308310
doi: 10.1074/jbc.C700023200
Drees, J. C., Chitteni-Pattu, S., McCaslin, D. R., Inman, R. B. & Cox, M. M. Inhibition of RecA protein function by the RdgC protein from Escherichia coli. J. Biol. Chem. 281, 4708–4717 (2006).
pubmed: 16377615
doi: 10.1074/jbc.M513592200
Hocher, A. et al. Growth temperature and chromatinization in archaea. Nat. Microbiol. 7, 1932–1942 (2022).
pubmed: 36266339
pmcid: 7613761
doi: 10.1038/s41564-022-01245-2
Zulianello, L., Van Ulsen, P., Van de Putte, P. & Goosen, N. Participation of the flank regions of the integration host factor protein in the specificity and stability of DNA binding. J. Biol. Chem. 270, 17902–17907 (1995).
pubmed: 7629095
doi: 10.1074/jbc.270.30.17902
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 1–4 https://www.nature.com/articles/s41587-023-01773-0 (2023).
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
pubmed: 29035372
doi: 10.1038/nbt.3988
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
pubmed: 35637307
pmcid: 9184281
doi: 10.1038/s41592-022-01488-1
Gabler, F. et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinformatics 72, e108 (2020).
Edgar, R. C. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat. Commun. 13, 1–9 (2022).
doi: 10.1038/s41467-022-34630-w
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
Wheeler, T. J., Clements, J. & Finn, R. D. Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinforma. 15, 1–9 (2014).
doi: 10.1186/1471-2105-15-7
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
pubmed: 31070718
pmcid: 6821337
doi: 10.1093/bioinformatics/btz305
Xu, S. et al. Ggtree: a serialized data object for visualization of a phylogenetic tree and annotation data. iMeta 1, 5–8 (2022).
doi: 10.1002/imt2.56
Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).
pubmed: 34520557
doi: 10.1093/nar/gkab776
Gilchrist, C. L. & Chooi, Y. H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).
pubmed: 33459763
doi: 10.1093/bioinformatics/btab007
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
pubmed: 20124692
pmcid: 2815665
doi: 10.1107/S0907444909047337
Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).
pubmed: 20057045
doi: 10.1107/S0907444909042589
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
pubmed: 15572765
doi: 10.1107/S0907444904019158
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).
pubmed: 21460454
pmcid: 3069751
doi: 10.1107/S0907444911001314
van der Valk, R. A., Qin, L., Moolenaar, G. F. & Dame, R. T. Quantitative determination of DNA bridging efficiency of chromatin proteins. In Dame, R. T. (ed.) Bacterial Chromatin: Methods and Protocols, 199–209 https://doi.org/10.1007/978-1-4939-8675-0_12 (Springer, 2018).