Histones and histone variant families in prokaryotes.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
11 Sep 2024
Historique:
received: 10 07 2023
accepted: 30 08 2024
medline: 12 9 2024
pubmed: 12 9 2024
entrez: 11 9 2024
Statut: epublish

Résumé

Histones are important chromatin-organizing proteins in eukaryotes and archaea. They form superhelical structures around which DNA is wrapped. Recent studies have shown that some archaea and bacteria contain alternative histones that exhibit different DNA binding properties, in addition to highly divergent sequences. However, the vast majority of these histones are identified in metagenomes and thus are difficult to study in vivo. The recent revolutionary breakthroughs in computational protein structure prediction by AlphaFold2 and RoseTTAfold allow for unprecedented insights into the potential function and structure of previously uncharacterized proteins. Here, we categorize the prokaryotic histone space into 17 distinct groups based on AlphaFold2 predictions. We identify a superfamily of histones, termed α3 histones, which are common in archaea and present in several bacteria. Importantly, we establish the existence of a large family of histones throughout archaea and in some bacteriophages that, instead of wrapping DNA, bridge DNA, thereby diverging from conventional nucleosomal histones.

Identifiants

pubmed: 39261503
doi: 10.1038/s41467-024-52337-y
pii: 10.1038/s41467-024-52337-y
doi:

Substances chimiques

Histones 0
Nucleosomes 0
Archaeal Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

7950

Subventions

Organisme : Nederlandse Organisatie voor Wetenschappelijk Onderzoek (Netherlands Organisation for Scientific Research)
ID : OCENW.GROOT.2019.012

Informations de copyright

© 2024. The Author(s).

Références

Luijsterburg, M. S., White, M. F., Driel, R. V. & Dame, R. T. The major architects of chromatin: architectural proteins in bacteria, archaea and eukaryotes. Crit. Rev. Biochem. Mol. Biol. 9238, 393–418 (2009).
Luger, K., Mäder, A. W., Richmond, R. K., Sargent, D. F. & Richmond, T. J. Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).
pubmed: 9305837 doi: 10.1038/38444
Zhao, H. et al. The role of cryptic ancestral symmetry in histone folding mechanisms across Eukarya and Archaea. PLOS Comput. Biol. 20, e1011721 (2024).
pubmed: 38181064 pmcid: 10796010 doi: 10.1371/journal.pcbi.1011721
Sandman, K., Krzycki, J. A., Dobrinski, B., Lurz, R. & Reeve, J. N. HMf, a DNA-binding protein isolated from the hyperthermophilic archaeon Methanothermus fervidus, is most closely related to histones. Proceedings of the National Academy of Sciences of the United States of America (1990).
Sandman, K., Grayling, R. A., Dobrinski, B., Lurz, R. & Reeve, J. N. Growth-phase-dependent synthesis of histones in the archaeon Methanothermus fervidus. Proc. Natl. Acad. Sci. USA 91, 12624–12628 (1994).
pubmed: 7809089 pmcid: 45491 doi: 10.1073/pnas.91.26.12624
Starich, M. R., Sandman, K., Reeve, J. N. & Summers, M. F. NMR structure of HMfB from the hyperthermophile, Methanothermus fervidus, confirms that this archaeal protein is a histone. J. Mol. Biol. 255, 187–203 (1996).
pubmed: 8568866 doi: 10.1006/jmbi.1996.0016
Decanniere, K., Sandman, K., Reeve, J. N. & Heinemann, U. Crystallization and preliminary X-ray characterization of the Methanothermus fervidus histones HMfA and HMfB. Proteins Struct. Funct. Genet. 24, 269–271 (1996).
pubmed: 8820495 doi: 10.1002/(SICI)1097-0134(199602)24:2<269::AID-PROT16>3.0.CO;2-L
Higashibata, H., Fujiwara, S., Takagi, M. & Imanaka, T. Analysis of DNA compaction profile and intracellular contents of archaeal histones from Pyrococcus kodakaraensis KOD1. Biochem. Biophys. Res. Commun. 258, 416–424 (1999).
pubmed: 10329402 doi: 10.1006/bbrc.1999.0533
Decanniere, K., Babu, A. M., Sandman, K., Reeve, J. N. & Heinemann, U. Crystal structures of recombinant histones HMfA and HMfB, from the hyperthermophilic archaeon Methanothermus fervidus. J. Mol. Biol. 303, 35–47 (2000).
pubmed: 11021968 doi: 10.1006/jmbi.2000.4104
Soares, D. J., Sandman, K. & Reeve, J. N. Mutational analysis of archaeal histone-DNA interactions. J. Mol. Biol. 297, 39–47 (2000).
pubmed: 10704305 doi: 10.1006/jmbi.2000.3546
Čuboňová, L. et al. An archaeal histone is required for transformation of Thermococcus kodakarensis. J. Bacteriol. 194, 6864–6874 (2012).
pmcid: 3510624 doi: 10.1128/JB.01523-12
Hocher, A. & Warnecke, T. Nucleosomes at the Dawn of Eukaryotes. Genome Biol. Evol. 16, evae029 (2024).
pubmed: 38366053 pmcid: 10919886 doi: 10.1093/gbe/evae029
Mattiroli, F. et al. Structure of histone-based chromatin in Archaea. Science 357, 609–612 (2017).
pubmed: 28798133 pmcid: 5747315 doi: 10.1126/science.aaj1849
Henneman, B. & Dame, R. T. Archaeal histones: dynamic and versatile genome architects. AIMS Microbiol. 1, 72–81 (2015).
doi: 10.3934/microbiol.2015.1.72
Henneman, B., van Emmerik, C., van Ingen, H. & Dame, R. T. Structure and function of archaeal histones. PLoS Genet. 14, 1–21 (2018).
doi: 10.1371/journal.pgen.1007582
Henneman, B. et al. Mechanical and structural properties of archaeal hypernucleosomes. Nucleic Acids Res. 49, 4338–4349 (2021).
pubmed: 33341892 doi: 10.1093/nar/gkaa1196
Bailey, K. A., Pereira, S. L., Widom, J. & Reeve, J. N. Archaeal histone selection of nucleosome positioning sequences and the procaryotic origin of histone-dependent genome evolution. J. Mol. Biol. 303, 25–34 (2000).
Erkelens, A. M., Henneman, B., Valk, R. A. V. D., Kirolos, N. C. S. & Dame, R. T. Specific DNA binding of archaeal histones HMfA and HMfB. Front. Microbiol. 14, 1166608 (2023).
Ofer, S. et al. DNA-bridging by an archaeal histone variant via a unique tetramerisation interface. Commun. Biol. 6, 1–16 (2023).
doi: 10.1038/s42003-023-05348-2
Dame, R. T., Rashid, F. Z. M. & Grainger, D. C. Chromosome organization in bacteria: mechanistic insights into genome structure and function. Nat. Rev. Genet. 21, 227–242 (2020).
pubmed: 31767998 doi: 10.1038/s41576-019-0185-4
Alva, V. & Lupas, A. N. Histones predate the split between bacteria and archaea. Bioinformatics 35, 2349–2353 (2019).
pubmed: 30520969 doi: 10.1093/bioinformatics/bty1000
Talbert, P. B., Armache, K. J. & Henikoff, S. Viral histones: pickpocket’s prize or primordial progenitor? Epigenet. Chrom. 15, 1–20 (2022).
Liu, Y. et al. Virus-encoded histone doublets are essential and form nucleosome-like structures. Cell 184, 4237–4250.e19 (2021).
pubmed: 34297924 pmcid: 8357426 doi: 10.1016/j.cell.2021.06.032
Bryson, T. D. et al. A giant virus genome is densely packaged by stable nucleosomes within virions. Mol. Cell 82, 4458–4470.e5 (2022).
pubmed: 36370708 doi: 10.1016/j.molcel.2022.10.020
Hocher, A. et al. Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. Nat. Microbiol. https://www.nature.com/articles/s41564-023-01492-x (2023).
Hu, Y. et al. Bacterial histone HBb from Bdellovibrio bacteriovorus compacts DNA by bending. Nucleic Acids Res. https://doi.org/10.1093/nar/gkae485 (2024).
Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021).
pubmed: 34265844 pmcid: 8371605 doi: 10.1038/s41586-021-03819-2
Evans, R. et al. Protein complex prediction with alphafold-multimer. bioRxiv https://www.biorxiv.org/content/early/2021/10/04/2021.10.04.463034.full.pdf (2021).
Baek, M. et al. Accurate prediction of protein structures and interactions using a three-track neural network. Science 373, 871–876 (2021).
pubmed: 34282049 pmcid: 7612213 doi: 10.1126/science.abj8754
Blum, M. et al. The InterPro protein families and domains database: 20 years on. Nucleic Acids Res. 49, D344–D354 (2021).
pubmed: 33156333 doi: 10.1093/nar/gkaa977
Bateman, A. et al. UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res. 49, D480–D489 (2021).
doi: 10.1093/nar/gkaa1100
Frickey, T. & Lupas, A. CLANS: A Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20, 3702–3704 (2004).
pubmed: 15284097 doi: 10.1093/bioinformatics/bth444
Takayanagi, S. et al. Chromosomal structure of the halophilic archaebacterium Halobacterium salinarium. J. Bacteriol. 174, 7207–7216 (1992).
pubmed: 1429445 pmcid: 207413 doi: 10.1128/jb.174.22.7207-7216.1992
Ammar, R. et al. Chromatin is an ancient innovation conserved between Archaea and Eukarya. eLife 2012, 1–11 (2012).
Liu, J. et al. Structural insight into binding of the ZZ domain of HERC2 to histone H3 and SUMO1. Structure 28, 1225–1230.e3 (2020).
pubmed: 32726574 doi: 10.1016/j.str.2020.07.003
Zhang, Y. et al. The ZZ domain of p300 mediates specificity of the adjacent HAT domain for histone H3. Nat. Struct. Mol. Biol. 25, 841–849 (2018).
pubmed: 30150647 pmcid: 6482957 doi: 10.1038/s41594-018-0114-9
Mi, W. et al. The ZZ-type zinc finger of ZZZ3 modulates the ATAC complex-mediated histone acetylation and gene activation. Nat. Commun. 9, 1–9 (2018).
doi: 10.1038/s41467-018-06247-5
Sondermann, H., Soisson, S. M., Bar-Sagi, D. & Kuriyan, J. Tandem histone folds in the structure of the N-terminal segment of the Ras activator son of sevenless. Structure 11, 1583–1593 (2003).
pubmed: 14656442 doi: 10.1016/j.str.2003.10.015
Sondermann, H., Nagar, B., Bar-Sagi, D. & Kuriyan, J. Computational docking and solution x-ray scattering predict a membrane-interacting role for the histone domain of the Ras activator son of sevenless. Proc. Natl. Acad. Sci. USA 102, 16632–16637 (2005).
pubmed: 16267129 pmcid: 1276615 doi: 10.1073/pnas.0508315102
Gureasko, J. et al. Role of the histone domain in the autoinhibition and activation of the Ras activator Son of Sevenless. Proc. Natl. Acad. Sci. USA 107, 3430–3435 (2010).
pubmed: 20133692 pmcid: 2816639 doi: 10.1073/pnas.0913915107
Briggs, G. S. et al. Ring structure of the Escherichia coli DNA-binding protein RdgC associated with recombination and replication fork repair. J. Biol. Chem. 282, 12353–12357 (2007).
pubmed: 17308310 doi: 10.1074/jbc.C700023200
Drees, J. C., Chitteni-Pattu, S., McCaslin, D. R., Inman, R. B. & Cox, M. M. Inhibition of RecA protein function by the RdgC protein from Escherichia coli. J. Biol. Chem. 281, 4708–4717 (2006).
pubmed: 16377615 doi: 10.1074/jbc.M513592200
Hocher, A. et al. Growth temperature and chromatinization in archaea. Nat. Microbiol. 7, 1932–1942 (2022).
pubmed: 36266339 pmcid: 7613761 doi: 10.1038/s41564-022-01245-2
Zulianello, L., Van Ulsen, P., Van de Putte, P. & Goosen, N. Participation of the flank regions of the integration host factor protein in the specificity and stability of DNA binding. J. Biol. Chem. 270, 17902–17907 (1995).
pubmed: 7629095 doi: 10.1074/jbc.270.30.17902
van Kempen, M. et al. Fast and accurate protein structure search with Foldseek. Nat. Biotechnol. 1–4 https://www.nature.com/articles/s41587-023-01773-0 (2023).
Steinegger, M. & Söding, J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35, 1026–1028 (2017).
pubmed: 29035372 doi: 10.1038/nbt.3988
Mirdita, M. et al. ColabFold: making protein folding accessible to all. Nat. Methods 19, 679–682 (2022).
pubmed: 35637307 pmcid: 9184281 doi: 10.1038/s41592-022-01488-1
Gabler, F. et al. Protein sequence analysis using the MPI bioinformatics toolkit. Curr. Protoc. Bioinformatics 72, e108 (2020).
Edgar, R. C. Muscle5: High-accuracy alignment ensembles enable unbiased assessments of sequence homology and phylogeny. Nat. Commun. 13, 1–9 (2022).
doi: 10.1038/s41467-022-34630-w
Eddy, S. R. Accelerated profile HMM searches. PLoS Comput. Biol. 7, e1002195 (2011).
Wheeler, T. J., Clements, J. & Finn, R. D. Skylign: a tool for creating informative, interactive logos representing sequence alignments and profile hidden Markov models. BMC Bioinforma. 15, 1–9 (2014).
doi: 10.1186/1471-2105-15-7
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
pubmed: 31070718 pmcid: 6821337 doi: 10.1093/bioinformatics/btz305
Xu, S. et al. Ggtree: a serialized data object for visualization of a phylogenetic tree and annotation data. iMeta 1, 5–8 (2022).
doi: 10.1002/imt2.56
Parks, D. H. et al. GTDB: an ongoing census of bacterial and archaeal diversity through a phylogenetically consistent, rank normalized and complete genome-based taxonomy. Nucleic Acids Res. 50, D785–D794 (2022).
pubmed: 34520557 doi: 10.1093/nar/gkab776
Gilchrist, C. L. & Chooi, Y. H. Clinker & clustermap.js: automatic generation of gene cluster comparison figures. Bioinformatics 37, 2473–2475 (2021).
pubmed: 33459763 doi: 10.1093/bioinformatics/btab007
Kabsch, W. XDS. Acta Crystallogr. D Biol. Crystallogr. 66, 125–132 (2010).
pubmed: 20124692 pmcid: 2815665 doi: 10.1107/S0907444909047337
Vagin, A. & Teplyakov, A. Molecular replacement with MOLREP. Acta Crystallogr. D Biol. Crystallogr. 66, 22–25 (2010).
pubmed: 20057045 doi: 10.1107/S0907444909042589
Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 60, 2126–2132 (2004).
pubmed: 15572765 doi: 10.1107/S0907444904019158
Murshudov, G. N. et al. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. D Biol. Crystallogr. 67, 355–367 (2011).
pubmed: 21460454 pmcid: 3069751 doi: 10.1107/S0907444911001314
van der Valk, R. A., Qin, L., Moolenaar, G. F. & Dame, R. T. Quantitative determination of DNA bridging efficiency of chromatin proteins. In Dame, R. T. (ed.) Bacterial Chromatin: Methods and Protocols, 199–209 https://doi.org/10.1007/978-1-4939-8675-0_12 (Springer, 2018).

Auteurs

Samuel Schwab (S)

Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands.

Yimin Hu (Y)

Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.

Bert van Erp (B)

Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands.

Marc K M Cajili (MKM)

Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands.

Marcus D Hartmann (MD)

Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.
Interfaculty Institute of Biochemistry, University of Tübingen, Tübingen, Germany.

Birte Hernandez Alvarez (B)

Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.

Vikram Alva (V)

Department of Protein Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany.

Aimee L Boyle (AL)

Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands.
Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands.
School of Chemistry, University of Bristol, Bristol, UK.

Remus T Dame (RT)

Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands. rtdame@chem.leidenuniv.nl.
Centre for Microbial Cell Biology, Leiden University, Leiden, The Netherlands. rtdame@chem.leidenuniv.nl.
Centre for Interdisciplinary Genome Research, Leiden University, Leiden, The Netherlands. rtdame@chem.leidenuniv.nl.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Populus Soil Microbiology Soil Microbiota Fungi
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins

Classifications MeSH