Sequence variants influencing the regulation of serum IgG subclass levels.


Journal

Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555

Informations de publication

Date de publication:
14 Sep 2024
Historique:
received: 01 12 2023
accepted: 10 09 2024
medline: 15 9 2024
pubmed: 15 9 2024
entrez: 14 9 2024
Statut: epublish

Résumé

Immunoglobulin G (IgG) is the main isotype of antibody in human blood. IgG consists of four subclasses (IgG1 to IgG4), encoded by separate constant region genes within the Ig heavy chain locus (IGH). Here, we report a genome-wide association study on blood IgG subclass levels. Across 4334 adults and 4571 individuals under 18 years, we discover ten new and identify four known variants at five loci influencing IgG subclass levels. These variants also affect the risk of asthma, autoimmune diseases, and blood traits. Seven variants map to the IGH locus, three to the Fcγ receptor (FCGR) locus, and two to the human leukocyte antigen (HLA) region, affecting the levels of all IgG subclasses. The most significant associations are observed between the G1m (f), G2m(n) and G3m(b*) allotypes, and IgG1, IgG2 and IgG3, respectively. Additionally, we describe selective associations with IgG4 at 16p11.2 (ITGAX) and 17q21.1 (IKZF3, ZPBP2, GSDMB, ORMDL3). Interestingly, the latter coincides with a highly pleiotropic signal where the allele associated with lower IgG4 levels protects against childhood asthma but predisposes to inflammatory bowel disease. Our results provide insight into the regulation of antibody-mediated immunity that can potentially be useful in the development of antibody based therapeutics.

Identifiants

pubmed: 39277589
doi: 10.1038/s41467-024-52470-8
pii: 10.1038/s41467-024-52470-8
doi:

Substances chimiques

Immunoglobulin G 0
Receptors, IgG 0
Immunoglobulin Heavy Chains 0
ORMDL3 protein, human 0
HLA Antigens 0
Membrane Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

8054

Informations de copyright

© 2024. The Author(s).

Références

Watson, C. T. & Breden, F. The immunoglobulin heavy chain locus: genetic variation, missing data, and implications for human disease. Genes Immun. 13, 363–373 (2012).
pubmed: 22551722 doi: 10.1038/gene.2012.12
Vidarsson, G., Dekkers, G. & Rispens, T. IgG subclasses and allotypes: from structure to effector functions. Front. Immunol. 5, 520 (2014).
pubmed: 25368619 pmcid: 4202688 doi: 10.3389/fimmu.2014.00520
Morell, A., Skvaril, F., Steinberg, A. G., Van Loghem, E. & Terry, W. D. Correlations between the concentrations of the four sub-classes of IgG and Gm allotypes in normal human sera. J. Immunol. 108, 195–206 (1972).
pubmed: 4622006 doi: 10.4049/jimmunol.108.1.195
Sarvas, H., Rautonen, N. & Makela, O. Allotype-associated differences in concentrations of human IgG subclasses. J. Clin. Immunol. 11, 39–45 (1991).
pubmed: 2022720 doi: 10.1007/BF00918793
Seppala, I. J., Sarvas, H. & Makela, O. Low concentrations of Gm allotypic subsets G3 mg and G1 mf in homozygotes and heterozygotes. J. Immunol. 151, 2529–2537 (1993).
pubmed: 8360475 doi: 10.4049/jimmunol.151.5.2529
Oxelius, V. A. & Pandey, J. P. Human immunoglobulin constant heavy G chain (IGHG) (Fcgamma) (GM) genes, defining innate variants of IgG molecules and B cells, have impact on disease and therapy. Clin. Immunol. 149, 475–486 (2013).
pubmed: 24239836 doi: 10.1016/j.clim.2013.10.003
Zhao, Y., Pan-Hammarstrom, Q., Zhao, Z., Wen, S. & Hammarstrom, L. Selective IgG2 deficiency due to a point mutation causing abnormal splicing of the Cgamma2 gene. Int. Immunol. 17, 95–101 (2005).
pubmed: 15569770 doi: 10.1093/intimm/dxh192
Pan, Q. & Hammarstrom, L. Molecular basis of IgG subclass deficiency. Immunol. Rev. 178, 99–110 (2000).
pubmed: 11213812 doi: 10.1034/j.1600-065X.2000.17815.x
Jonsson, S. et al. Identification of sequence variants influencing immunoglobulin levels. Nat. Genet. 49, 1182–1191 (2017).
pubmed: 28628107 doi: 10.1038/ng.3897
Granada, M. et al. A genome-wide association study of plasma total IgE concentrations in the Framingham Heart Study. J. Allergy Clin. Immunol. 129, 840–845.e821 (2012).
pubmed: 22075330 doi: 10.1016/j.jaci.2011.09.029
Garcia-Prat, M. et al. Age-specific pediatric reference ranges for immunoglobulins and complement proteins on the Optilite() automated turbidimetric analyzer. J. Clin. Lab Anal. 32, e22420 (2018).
pubmed: 29603375 pmcid: 6817213 doi: 10.1002/jcla.22420
Sveinbjornsson, G. et al. Weighting sequence variants based on their annotation increases power of whole-genome association studies. Nat. Genet. 48, 314–317 (2016).
pubmed: 26854916 doi: 10.1038/ng.3507
Sollis, E. et al. The NHGRI-EBI GWAS catalog: knowledgebase and deposition resource. Nucleic Acids Res. 51, D977–D985 (2023).
pubmed: 36350656 doi: 10.1093/nar/gkac1010
Tsang, A. S. M. W. et al. Fc-gamma receptor polymorphisms differentially influence susceptibility to systemic lupus erythematosus and lupus nephritis. Rheumatology 55, 939–948 (2016).
doi: 10.1093/rheumatology/kev433
Meinderts, S. M. et al. Nonclassical FCGR2C haplotype is associated with protection from red blood cell alloimmunization in sickle cell disease. Blood 130, 2121–2130 (2017).
pubmed: 28899854 doi: 10.1182/blood-2017-05-784876
Poddighe, D., Rebuffi, C., De Silvestri, A. & Capittini, C. Carrier frequency of HLA-DQB1*02 allele in patients affected with celiac disease: a systematic review assessing the potential rationale of a targeted allelic genotyping as a first-line screening. World J. Gastroenterol. 26, 1365–1381 (2020).
pubmed: 32256023 pmcid: 7109277 doi: 10.3748/wjg.v26.i12.1365
Rodriguez, O. L. et al. A novel framework for characterizing genomic haplotype diversity in the human immunoglobulin heavy chain locus. Front. Immunol. 11, 2136 (2020).
pubmed: 33072076 pmcid: 7539625 doi: 10.3389/fimmu.2020.02136
Lacombe, C., Aucouturier, P. & Preud’homme, J. L. Selective IgG1 deficiency. Clin. Immunol. Immunopathol. 84, 194–201 (1997).
pubmed: 9245552 doi: 10.1006/clin.1997.4386
Smith, C. I., Hammarstrom, L., Henter, J. I. & de Lange, G. G. Molecular and serologic analysis of IgG1 deficiency caused by new forms of the constant region of the Ig H chain gene deletions. J. Immunol. 142, 4514–4519 (1989).
pubmed: 2498432 doi: 10.4049/jimmunol.142.12.4514
Nimmerjahn, F., Gordan, S. & Lux, A. FcgammaR dependent mechanisms of cytotoxic, agonistic, and neutralizing antibody activities. Trends Immunol. 36, 325–336 (2015).
pubmed: 25981969 doi: 10.1016/j.it.2015.04.005
Bournazos, S., Gupta, A. & Ravetch, J. V. The role of IgG Fc receptors in antibody-dependent enhancement. Nat. Rev. Immunol. 20, 633–643 (2020).
pubmed: 32782358 pmcid: 7418887 doi: 10.1038/s41577-020-00410-0
Blank, M. C. et al. Decreased transcription of the human FCGR2B gene mediated by the -343 G/C promoter polymorphism and association with systemic lupus erythematosus. Hum. Genet. 117, 220–227 (2005).
pubmed: 15895258 doi: 10.1007/s00439-005-1302-3
Saevarsdottir, S. et al. Multiomics analysis of rheumatoid arthritis yields sequence variants that have large effects on risk of the seropositive subset. Ann. Rheum. Dis. 81, 1085–1095 (2022).
pubmed: 35470158 doi: 10.1136/annrheumdis-2021-221754
Flinsenberg, T. W. et al. A novel FcgammaRIIa Q27W gene variant is associated with common variable immune deficiency through defective FcgammaRIIa downstream signaling. Clin. Immunol. 155, 108–117 (2014).
pubmed: 25242138 doi: 10.1016/j.clim.2014.09.006
Simon, A. K., Hollander, G. A. & McMichael, A. Evolution of the immune system in humans from infancy to old age. Proc. Biol. Sci. 282, 20143085 (2015).
pubmed: 26702035 pmcid: 4707740
Kiryluk, K. et al. Discovery of new risk loci for IgA nephropathy implicates genes involved in immunity against intestinal pathogens. Nat. Genet. 46, 1187–1196 (2014).
pubmed: 25305756 pmcid: 4213311 doi: 10.1038/ng.3118
Panganiban, R. A. et al. A functional splice variant associated with decreased asthma risk abolishes the ability of gasdermin B to induce epithelial cell pyroptosis. J. Allergy Clin. Immunol. 142, 1469–1478 (2018).
Moffatt, M. F. et al. A large-scale, consortium-based genomewide association study of asthma. New Engl. J. Med. 363, 1211–1221 (2010).
pubmed: 20860503 doi: 10.1056/NEJMoa0906312
Moffatt, M. F. et al. Genetic variants regulating ORMDL3 expression contribute to the risk of childhood asthma. Nature 448, 470–473 (2007).
pubmed: 17611496 doi: 10.1038/nature06014
Verlaan, D. J. et al. Allele-specific chromatin remodeling in the ZPBP2/GSDMB/ORMDL3 locus associated with the risk of asthma and autoimmune disease. Am. J. Hum. Genet 85, 377–393 (2009).
pubmed: 19732864 pmcid: 2771592 doi: 10.1016/j.ajhg.2009.08.007
Michailidou, D., Schwartz, D. M., Mustelin, T. & Hughes, G. C. Allergic aspects of IgG4-related disease: implications for pathogenesis and therapy. Front. Immunol. 12, 693192 (2021).
pubmed: 34305927 pmcid: 8292787 doi: 10.3389/fimmu.2021.693192
Weinhold, N. et al. The 7p15.3 (rs4487645) association for multiple myeloma shows strong allele-specific regulation of the MYC-interacting gene CDCA7L in malignant plasma cells. Haematologica 100, e110–e113 (2015).
pubmed: 25480495 pmcid: 4349291 doi: 10.3324/haematol.2014.118786
Ferkingstad, E. et al. Large-scale integration of the plasma proteome with genetics and disease. Nat. Genet. 53, 1712–1721 (2021).
pubmed: 34857953 doi: 10.1038/s41588-021-00978-w
Wilson, T. M. et al. IL-5 receptor alpha levels in patients with marked eosinophilia or mastocytosis. J. Allergy Clin. Immunol. 128, 1086–1092.e1081-1083 (2011).
pubmed: 21762978 pmcid: 3205313 doi: 10.1016/j.jaci.2011.05.032
Shima, H. et al. Identification of TOSO/FAIM3 as an Fc receptor for IgM. Int. Immunol. 22, 149–156 (2010).
pubmed: 20042454 doi: 10.1093/intimm/dxp121
Giambartolomei, C. et al. Bayesian test for colocalisation between pairs of genetic association studies using summary statistics. PLoS Genet. 10, e1004383 (2014).
pubmed: 24830394 pmcid: 4022491 doi: 10.1371/journal.pgen.1004383
Ternant, D. et al. IgG1 allotypes influence the pharmacokinetics of therapeutic monoclonal antibodies through FcRn binding. J. Immunol. 196, 607–613 (2016).
pubmed: 26685205 doi: 10.4049/jimmunol.1501780
Stapleton, N. M. et al. Competition for FcRn-mediated transport gives rise to short half-life of human IgG3 and offers therapeutic potential. Nat. Commun. 2, 599 (2011).
pubmed: 22186895 doi: 10.1038/ncomms1608
Bashirova, A. A. et al. Population-specific diversity of the immunoglobulin constant heavy G chain (IGHG) genes. Genes Immun. 22, 327–334 (2021).
pubmed: 34864821 pmcid: 8674132 doi: 10.1038/s41435-021-00156-2
Vaisman-Mentesh, A., Gutierrez-Gonzalez, M., DeKosky, B. J. & Wine, Y. The molecular mechanisms that underlie the immune biology of anti-drug antibody formation following treatment with monoclonal antibodies. Front. Immunol. 11, 1951 (2020).
pubmed: 33013848 pmcid: 7461797 doi: 10.3389/fimmu.2020.01951
Montes, A. et al. Rheumatoid arthritis response to treatment across IgG1 allotype- anti-TNF incompatibility: a case-only study. Arthritis Res. Ther. 17, 63 (2015).
pubmed: 25885039 pmcid: 4411723 doi: 10.1186/s13075-015-0571-z
Bartelds, G. M. et al. Surprising negative association between IgG1 allotype disparity and anti-adalimumab formation: a cohort study. Arthritis Res. Ther. 12, R221 (2010).
pubmed: 21187010 pmcid: 3046534 doi: 10.1186/ar3208
Cui, J. et al. Genome-wide association study and gene expression analysis identifies CD84 as a predictor of response to etanercept therapy in rheumatoid arthritis. PLoS Genet. 9, e1003394 (2013).
pubmed: 23555300 pmcid: 3610685 doi: 10.1371/journal.pgen.1003394
Liu, C. et al. Genome-wide association scan identifies candidate polymorphisms associated with differential response to anti-TNF treatment in rheumatoid arthritis. Mol. Med. 14, 575–581 (2008).
pubmed: 18615156 pmcid: 2276142 doi: 10.2119/2008-00056.Liu
Plant, D. et al. Genome-wide association study of genetic predictors of anti-tumor necrosis factor treatment efficacy in rheumatoid arthritis identifies associations with polymorphisms at seven loci. Arthritis Rheum. 63, 645–653 (2011).
pubmed: 21061259 pmcid: 3084508 doi: 10.1002/art.30130
Umicevic Mirkov, M. et al. Genome-wide association analysis of anti-TNF drug response in patients with rheumatoid arthritis. Ann. Rheum. Dis. 72, 1375–1381 (2013).
pubmed: 23233654 doi: 10.1136/annrheumdis-2012-202405
Wu, S. & Wang, H. IgG4-related digestive diseases: diagnosis and treatment. Front. Immunol. 14, 1278332 (2023).
pubmed: 37868965 pmcid: 10585276 doi: 10.3389/fimmu.2023.1278332
Terao, C. et al. IgG4-related disease in the Japanese population: a genome-wide association study. Lancet Rheumatol. 1, e14–e22 (2019).
pubmed: 38229354 doi: 10.1016/S2665-9913(19)30006-2
Stein, M. M. et al. A decade of research on the 17q12-21 asthma locus: piecing together the puzzle. J. Allergy Clin. Immunol. 142, 749–764.e743 (2018).
pubmed: 29307657 pmcid: 6172038 doi: 10.1016/j.jaci.2017.12.974
Halapi, E. et al. A sequence variant on 17q21 is associated with age at onset and severity of asthma. Eur. J. Hum. Genet. 18, 902–908 (2010).
pubmed: 20372189 pmcid: 2987388 doi: 10.1038/ejhg.2010.38
Yazar, S. et al. Single-cell eQTL mapping identifies cell type-specific genetic control of autoimmune disease. Science 376, eabf3041 (2022).
pubmed: 35389779 doi: 10.1126/science.abf3041
Perez, R. K. et al. Single-cell RNA-seq reveals cell type-specific molecular and genetic associations to lupus. Science 376, eabf1970 (2022).
pubmed: 35389781 pmcid: 9297655 doi: 10.1126/science.abf1970
Ford, E. E. et al. FLAIRR-Seq: a method for single-molecule resolution of near full-length antibody H chain repertoires. J. Immunol. 210, 1607–1619 (2023).
pubmed: 37027017 pmcid: 10152037 doi: 10.4049/jimmunol.2200825
Gudbjartsson, D. F. et al. Large-scale whole-genome sequencing of the Icelandic population. Nat. Genet. 47, 435–444 (2015).
pubmed: 25807286 doi: 10.1038/ng.3247
Eggertsson, H. P. et al. Graphtyper enables population-scale genotyping using pangenome graphs. Nat. Genet. 49, 1654–1660 (2017).
pubmed: 28945251 doi: 10.1038/ng.3964
Kong, A. et al. Detection of sharing by descent, long-range phasing and haplotype imputation. Nat. Genet. 40, 1068–1075 (2008).
pubmed: 19165921 pmcid: 4540081 doi: 10.1038/ng.216
Loh, P. R., Palamara, P. F. & Price, A. L. Fast and accurate long-range phasing in a UK Biobank cohort. Nat. Genet. 48, 811–816 (2016).
pubmed: 27270109 pmcid: 4925291 doi: 10.1038/ng.3571
Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1655–1664 (2009).
pubmed: 19648217 pmcid: 2752134 doi: 10.1101/gr.094052.109
Genomes Project, C. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
doi: 10.1038/nature15393
Price, A. L. et al. Long-range LD can confound genome scans in admixed populations. Am. J. Hum. Genet. 83, 132–135 (2008).
pubmed: 18606306 pmcid: 2443852 doi: 10.1016/j.ajhg.2008.06.005
Purcell, S. et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am. J. Hum. Genet. 81, 559–575 (2007).
pubmed: 17701901 pmcid: 1950838 doi: 10.1086/519795
Diaz-Papkovich, A., Anderson-Trocme, L. & Gravel, S. A review of UMAP in population genetics. J. Hum. Genet. 66, 85–91 (2021).
pubmed: 33057159 doi: 10.1038/s10038-020-00851-4
Guethbjartsson, H. et al. GORpipe: a query tool for working with sequence data based on a Genomic Ordered Relational (GOR) architecture. Bioinformatics 32, 3081–3088 (2016).
pmcid: 5048061 doi: 10.1093/bioinformatics/btw199
Benonisdottir, S. et al. Epigenetic and genetic components of height regulation. Nat. Commun. 7, 13490 (2016).
pubmed: 27848971 pmcid: 5116096 doi: 10.1038/ncomms13490
Bulik-Sullivan, B. K. et al. LD Score regression distinguishes confounding from polygenicity in genome-wide association studies. Nat. Genet 47, 291–295 (2015).
pubmed: 25642630 pmcid: 4495769 doi: 10.1038/ng.3211
Wellcome Trust Case Control, C. et al. Bayesian refinement of association signals for 14 loci in 3 common diseases. Nat. Genet. 44, 1294–1301 (2012).
doi: 10.1038/ng.2435
Gretarsdottir, S. et al. A splice region variant in LDLR lowers non-high density lipoprotein cholesterol and protects against coronary artery disease. PLoS Genet. 11, e1005379 (2015).
pubmed: 26327206 pmcid: 4556698 doi: 10.1371/journal.pgen.1005379
Kehr, B. et al. Diversity in non-repetitive human sequences not found in the reference genome. Nat. Genet. 49, 588–593 (2017).
pubmed: 28250455 doi: 10.1038/ng.3801
Stegle, O., Parts, L., Durbin, R. & Winn, J. A Bayesian framework to account for complex non-genetic factors in gene expression levels greatly increases power in eQTL studies. PLoS Comput. Biol. 6, e1000770 (2010).
pubmed: 20463871 pmcid: 2865505 doi: 10.1371/journal.pcbi.1000770
Went, M. et al. Identification of multiple risk loci and regulatory mechanisms influencing susceptibility to multiple myeloma. Nat. Commun. 9, 3707 (2018).
pubmed: 30213928 pmcid: 6137048 doi: 10.1038/s41467-018-04989-w
Ajore, R. et al. Functional dissection of inherited non-coding variation influencing multiple myeloma risk. Nat. Commun. 13, 151 (2022).
pubmed: 35013207 pmcid: 8748989 doi: 10.1038/s41467-021-27666-x
Corces, M. R. et al. Lineage-specific and single-cell chromatin accessibility charts human hematopoiesis and leukemia evolution. Nat. Genet. 48, 1193–1203 (2016).
pubmed: 27526324 pmcid: 5042844 doi: 10.1038/ng.3646
Dekkers, G. et al. Affinity of human IgG subclasses to mouse Fc gamma receptors. MAbs 9, 767–773 (2017).
pubmed: 28463043 pmcid: 5524164 doi: 10.1080/19420862.2017.1323159
Okada, Y. et al. Genetics of rheumatoid arthritis contributes to biology and drug discovery. Nature 506, 376–381 (2014).
pubmed: 24390342 doi: 10.1038/nature12873
Liu, J. Z. et al. Association analyses identify 38 susceptibility loci for inflammatory bowel disease and highlight shared genetic risk across populations. Nat. Genet. 47, 979–986 (2015).
pubmed: 26192919 pmcid: 4881818 doi: 10.1038/ng.3359
Lopez-Isac, E. et al. GWAS for systemic sclerosis identifies multiple risk loci and highlights fibrotic and vasculopathy pathways. Nat. Commun. 10, 4955 (2019).
pubmed: 31672989 pmcid: 6823490 doi: 10.1038/s41467-019-12760-y
Chen, M. H. et al. Trans-ethnic and ancestry-specific blood-cell genetics in 746,667 individuals from 5 global populations. Cell 182, 1198–1213.e1114 (2020).
pubmed: 32888493 pmcid: 7480402 doi: 10.1016/j.cell.2020.06.045

Auteurs

Thorunn A Olafsdottir (TA)

deCODE genetics/Amgen Inc., Reykjavik, Iceland. thorunno@decode.is.
Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland. thorunno@decode.is.

Gudmar Thorleifsson (G)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Aitzkoa Lopez de Lapuente Portilla (A)

Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
Lund Stem Cell Center, Lund University, Lund, Sweden.

Stefan Jonsson (S)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.
Alvotech, Sæmundargötu 15-19, Reykjavík, Iceland.

Lilja Stefansdottir (L)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Abhishek Niroula (A)

Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden.
Lund Stem Cell Center, Lund University, Lund, Sweden.
Broad Institute, Cambridge, MA, USA.

Aslaug Jonasdottir (A)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Hannes P Eggertsson (HP)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Gisli H Halldorsson (GH)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland.

Gudny E Thorlacius (GE)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Asgeir O Arnthorsson (AO)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Unnur S Bjornsdottir (US)

Department of Respiratory Medicine and Sleep, Landspitali, The National University Hospital of Iceland, Reykjavik, Iceland.

Folkert W Asselbergs (FW)

Institute of Health Informatics, University College London, London, UK.
The National Institute for Health Research University College London Hospitals Biomedical Research Centre, University College London, London, UK.
Department of Cardiology, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centre, University of Amsterdam, Amsterdam, The Netherlands.

Arthur E H Bentlage (AEH)

Immunoglobulin Research laboratory, Sanquin Research, Amsterdam, The Netherlands.
Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.

Gudmundur I Eyjolfsson (GI)

The Laboratory in Mjodd, Reykjavik, Iceland.

Steinunn Gudmundsdottir (S)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Kristbjorg Gunnarsdottir (K)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Bjarni V Halldorsson (BV)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.
School of Technology, Reykjavik University, Reykjavik, Iceland.

Hilma Holm (H)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Bjorn R Ludviksson (BR)

Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
Department of Immunology, Landsspitali, the National University Hospital of Iceland, Reykjavik, Iceland.

Pall Melsted (P)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland.

Gudmundur L Norddahl (GL)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Isleifur Olafsson (I)

Department of Clinical Biochemistry, Landsspitali, the National University Hospital of Iceland, Reykjavik, Iceland.

Saedis Saevarsdottir (S)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.
Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.

Olof Sigurdardottir (O)

Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, Iceland.

Asgeir Sigurdsson (A)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Robin Temming (R)

Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.
The Laboratory in Mjodd, Reykjavik, Iceland.

Pall T Önundarson (PT)

Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
Department of Clinical Biochemistry, Akureyri Hospital, Akureyri, Iceland.

Unnur Thorsteinsdottir (U)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.
Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.

Gestur Vidarsson (G)

Immunoglobulin Research laboratory, Sanquin Research, Amsterdam, The Netherlands.
Department of Biomolecular Mass Spectrometry and Proteomics, Utrecht Institute for Pharmaceutical Sciences and Bijvoet Center for Biomolecular Research, Utrecht University, Utrecht, The Netherlands.

Patrick Sulem (P)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Daniel F Gudbjartsson (DF)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.
School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland.

Ingileif Jonsdottir (I)

deCODE genetics/Amgen Inc., Reykjavik, Iceland.

Björn Nilsson (B)

Division of Hematology and Transfusion Medicine, Department of Laboratory Medicine, Lund University, Lund, Sweden. bjorn.nilsson@med.lu.se.
Lund Stem Cell Center, Lund University, Lund, Sweden. bjorn.nilsson@med.lu.se.
Broad Institute, Cambridge, MA, USA. bjorn.nilsson@med.lu.se.

Kari Stefansson (K)

deCODE genetics/Amgen Inc., Reykjavik, Iceland. kstefans@decode.is.
Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland. kstefans@decode.is.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH