Laser-induced CdS/TiO


Journal

Mikrochimica acta
ISSN: 1436-5073
Titre abrégé: Mikrochim Acta
Pays: Austria
ID NLM: 7808782

Informations de publication

Date de publication:
27 Sep 2024
Historique:
received: 26 06 2024
accepted: 19 09 2024
medline: 27 9 2024
pubmed: 27 9 2024
entrez: 27 9 2024
Statut: epublish

Résumé

A ratiometric self-powered photoelectrochemical sensor based on laser direct writing technology was constructed to address the problem that the conventional single-signal detection mode was susceptible to the influence of instrumentation and environmental factors, which interfered with the detection results. Laser-induced CdS/TiO

Identifiants

pubmed: 39331214
doi: 10.1007/s00604-024-06721-6
pii: 10.1007/s00604-024-06721-6
doi:

Substances chimiques

Aflatoxin B1 9N2N2Y55MH
Graphite 7782-42-5
Titanium D1JT611TNE
titanium dioxide 15FIX9V2JP
Cadmium Compounds 0
cadmium sulfide 057EZR4Z7Q
Sulfides 0
Aptamers, Nucleotide 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

630

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature.

Références

Zeng R, Gong H, Li Y, Li Y, Lin W, Tang D, Knopp D (2022) CRISPR-Cas12a-derived photoelectrochemical biosensor for point-of-care diagnosis of nucleic acid. Anal Chem 94(20):7442–7448
doi: 10.1021/acs.analchem.2c01373 pubmed: 35549163
Zeng R, Wang W, Chen M, Wan Q, Wang C, Knopp D, Tang D (2021) CRISPR-Cas12a-driven MXene-PEDOT:PSS piezoresistive wireless biosensor. Nano Energy 82:105711
doi: 10.1016/j.nanoen.2020.105711
Zeng R, Xu J, Lu L, Lin Q, Huang X, Huang L, Li M, Tang D (2022) Photoelectrochemical bioanalysis of MicroRNA on yolk-in-shell Au@CdS based on the catalytic hairpin assembly-mediated CRISPR-Cas12a system. Chem Commun 58(54):7562–7565
doi: 10.1039/D2CC02821B
Çakıroğlu B, Jabiyeva N, Holzinger M (2023) Photosystem ii as a chemiluminescence-induced photosensitizer for photoelectrochemical biofuel cell-type biosensing system. Biosens Bioelectron 226:115133
doi: 10.1016/j.bios.2023.115133 pubmed: 36773487
Çakıroğlu B, Chauvin J, Le Goff A, Gorgy K, Özacar M, Holzinger M (2020) Photoelectrochemically-assisted biofuel cell constructed by redox complex and g-C
doi: 10.1016/j.bios.2020.112601 pubmed: 32931991
Qiu Z, Xue X, Lei Y, Lin X, Tang D, Chen Y (2023) MXene-TiO
doi: 10.1016/j.aca.2023.341126 pubmed: 37062561
Zeng R, Xu J, Liang T, Li M, Tang D (2023) Photocurrent-polarity-switching photoelectrochemical biosensor for switching spatial distance electroactive tags. ACS Sens 8(1):317–325
doi: 10.1021/acssensors.2c02314 pubmed: 36617728
Zeng R, Li Y, Li Y, Wan Q, Huang Z, Qiu Z, Tang D (2022) Smartphone-based photoelectrochemical immunoassay with Co
Gao Y, Li M, Zeng Y, Liu X, Tang D (2022) Tunable competitive absorption-induced signal-on photoelectrochemical immunoassay for cardiac troponin I based on Z-Scheme metal-organic framework heterojunctions. Anal Chem 94:13582–13589
doi: 10.1021/acs.analchem.2c03263 pubmed: 36129524
Sharma S, Ganeshan K, Pattnaik K, Kanungo S, Chappanda K (2019) Laser induced flexible graphene electrodes for electrochemical sensing of hydrazine. Mater Lett 262:127150
doi: 10.1016/j.matlet.2019.127150
Zhang Z, Song M, Hao J, Wu K, Li C, Hu C (2018) Visible light laser-induced graphene from phenolic resin: a new approach for directly writing graphene-based electrochemical devices on various substrates. Carbon 127:287–296
doi: 10.1016/j.carbon.2017.11.014
Luo S, Hoang P, Liu T (2016) Direct laser writing for creating porous graphitic structures and their use for flexible and highly sensitive sensor and sensor arrays. Carbon 96:522–531
doi: 10.1016/j.carbon.2015.09.076
Bobinger M, Romero F, Salinas-Castillo A, Becherer M, Lugli P, Morales D, Rodríguez N, Rivadeneyra A (2019) Flexible and robust laser-induced graphene heaters photothermally scribed on bare polyimide substrates. Carbon 144:116–126
doi: 10.1016/j.carbon.2018.12.010
Ge L, Hong Q, Li H, Liu C, Li F (2019) Direct-laser-writing of metal sulfide-graphene nanocomposite photoelectrode toward sensitive photoelectrochemical sensing. Adv Funct Mater 29:190400
doi: 10.1002/adfm.201904000
Wei J, Hu QQ, Gao Y, Hao N, Qian J, Wang K (2021) Novel anti-interference strategy for a self-powered sensor: mediator-free and biospecific photocathode interface. Anal Chem 93:12690–12697
doi: 10.1021/acs.analchem.1c02555 pubmed: 34506128
Du X, Zhang B, Lian Y, Jiang X, Li Y, Jiang D (2024) A bulit-in self-calibration ratiometric self-powered photoelectrochemical sensor for high-precision and sensitive detection of microcystin-RR. Microchim Acta 191:379
doi: 10.1007/s00604-024-06447-5
Yao X, Gao J, Yan K, Chen Y, Zhang J (2020) Ratiometric self-powered sensor for 17β-estradiol detection based on a dual-channel photocatalytic fuel cell. Anal Chem 92:8026–8030
doi: 10.1021/acs.analchem.0c01543 pubmed: 32478510
Zhang K, Lv S, Tang D (2019) Novel 3D printed device for dual-signaling ratiometric photoelectrochemical readout of biomarker using lambda-exonuclease-assisted recycling amplification. Anal Chem 91:10049–10055
doi: 10.1021/acs.analchem.9b01958 pubmed: 31256583
Lu Y, Zhang B, Tian Y, Guo Q, Nie G (2021) Ultrasensitive ratiometric photoelectrochemical immunoassay for prostate specific antigen based on nanoscale heterojunction. Sens Actuators B Chem 326:128994
doi: 10.1016/j.snb.2020.128994
Gao J, Yao X, Chen Y, Gao Z, Zhang J (2021) Near-infrared light-induced self-powered aptasensing platform for aflatoxin B1 based on upconversion nanoparticles-doped Bi
doi: 10.1021/acs.analchem.0c04248 pubmed: 33284587
Yu Z, Qiu C, Huang L, Gao Y, Tang D (2023) Microelectromechanical microsystems-supported photothermal immunoassay for point-of-care testing of aflatoxin B1 in foodstuff. Anal Chem 95:4212–4219
doi: 10.1021/acs.analchem.2c05617 pubmed: 36780374
Li H, Xia X, Guo C, Ge L, Li F (2020) Laser-induced nano-bismuth decorated CdS-graphene hybrid for plasmon-enhanced photoelectrochemical analysis. Chem Commun 56:13784–13787
doi: 10.1039/D0CC05907B
Ge L, Hong Q, Li H, Li F (2019) A laser-induced TiO
doi: 10.1039/C9CC00889F
Hong Q, Yang L, Ge L, Liu Z, Li F (2018) Direct-laser-writing of three-dimensional porous graphene frameworks on indium-tin oxide for sensitive electrochemical biosensing. Analyst 143:3327–3334
doi: 10.1039/C8AN00888D pubmed: 29926022
Singh P, Li Y, Zhang J, Tour J, Arnusch C (2018) Sulfur-doped laser-induced porous graphene derived from polysulfone-class polymers and membranes. ACS Nano 12:289–297
doi: 10.1021/acsnano.7b06263 pubmed: 29241007
Hu X, Wang Y, Ling Z, Song H, Cai Y, Li Z, Zu D, Li C (2021) Ternary g-C
doi: 10.1016/j.apsusc.2021.149817

Auteurs

Zhenli Qiu (Z)

Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, People's Republic of China.

Ying Yang (Y)

Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, People's Republic of China.

Xianghang Xue (X)

Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, People's Republic of China.

Yiting Chen (Y)

Fujian Provincial University Engineering Research Center of Green Materials and Chemical Engineering, College of Materials and Chemical Engineering, Minjiang University, Fuzhou, 350108, People's Republic of China.

Dianping Tang (D)

Key Laboratory of Analytical Science for Food Safety and Biology (MOE & Fujian Province), Department of Chemistry, Fuzhou University, Fuzhou, 350108, People's Republic of China. dianping.tang@fzu.edu.cn.

Articles similaires

Humans Electroencephalography Female Male Middle Aged
Zea mays Ozone Mycotoxins Food Safety Food Contamination
Oryza Soil Pollutants Risk Assessment Metals, Heavy Humans
Humans Breast Neoplasms Female Mass Spectrometry Adipose Tissue

Classifications MeSH