Genomic and phenotypic imprints of microbial domestication on cheese starter cultures.
Journal
Nature communications
ISSN: 2041-1723
Titre abrégé: Nat Commun
Pays: England
ID NLM: 101528555
Informations de publication
Date de publication:
05 Oct 2024
05 Oct 2024
Historique:
received:
29
03
2024
accepted:
16
09
2024
medline:
5
10
2024
pubmed:
5
10
2024
entrez:
4
10
2024
Statut:
epublish
Résumé
Domestication - the artificial selection of wild species to obtain variants with traits of human interest - was integral to the rise of complex societies. The oversupply of food was probably associated with the formalization of food preservation strategies through microbial fermentation. While considerable literature exists on the antiquity of fermented food, only few eukaryotic microbes have been studied so far for signs of domestication, less is known for bacteria. Here, we tested if cheese starter cultures harbour typical hallmarks of domestication by characterising over 100 community samples and over 100 individual strains isolated from historical and modern traditional Swiss cheese starter cultures. We find that cheese starter cultures have low genetic diversity both at the species and strain-level and maintained stable phenotypic traits. Molecular clock dating further suggests that the evolutionary origin of the bacteria approximately coincided with the first archaeological records of cheese making. Finally, we find evidence for ongoing genome decay and pseudogenization via transposon insertion related to a reduction of their niche breadth. Future work documenting the prevalence of these hallmarks across diverse fermented food systems and geographic regions will be key to unveiling the joint history of humanity with fermented food microbes.
Identifiants
pubmed: 39366947
doi: 10.1038/s41467-024-52687-7
pii: 10.1038/s41467-024-52687-7
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
8642Informations de copyright
© 2024. The Author(s).
Références
Diamond, J. Evolution, consequences and future of plant and animal domestication. Nature 418, 700–707 (2002).
doi: 10.1038/nature01019
Purugganan, M. D. What is domestication? Trends Ecol. Evol. 37, 663–671 (2022).
doi: 10.1016/j.tree.2022.04.006
Driscoll, C. A. & Macdonald, D. W. O’Brien SJ. From wild animals to domestic pets, an evolutionary view of domestication. Proc. Natl. Acad. Sci. USA 106, 9971–9978 (2009).
doi: 10.1073/pnas.0901586106
Lazaridis, I. et al. Genomic insights into the origin of farming in the ancient Near East. Nature 536, 419–424 (2016).
doi: 10.1038/nature19310
Weisdorf, J. L. From foraging to farming: Explaining the Neolithic Revolution. J. Econ. Surv. 19, 561–586 (2005).
doi: 10.1111/j.0950-0804.2005.00259.x
Yousef, E. A. A., Müller, T., Börner, A. & Schmid, K. J. Comparative analysis of genetic diversity and differentiation of cauliflower (Brassica oleracea var. botrytis) accessions from two ex situ genebanks. PLoS ONE 13, e0192062 (2018).
doi: 10.1371/journal.pone.0192062
Pitt, D. et al. Domestication of cattle: Two or three events? Evol. Appl. 12, 123 (2019).
doi: 10.1111/eva.12674
Ellis, E. C. Anthropogenic transformation of the terrestrial biosphere. Philos. Trans. A Math. Phys. Eng. Sci. 369, 1010–1035 (2011).
Milla, R. et al. Phylogenetic patterns and phenotypic profiles of the species of plants and mammals farmed for food. Nat. Ecol. Evol. 2, 1808–1817 (2018).
doi: 10.1038/s41559-018-0690-4
Meyer, R. S., DuVal, A. E. & Jensen, H. R. Patterns and processes in crop domestication: an historical review and quantitative analysis of 203 global food crops. N. Phytol. 196, 29–48 (2012).
doi: 10.1111/j.1469-8137.2012.04253.x
Salque, M. et al. Earliest evidence for cheese making in the sixth millennium BC in northern Europe. Nature 493, 522–525 (2013).
doi: 10.1038/nature11698
Wilkin, S. et al. Dairy pastoralism sustained eastern Eurasian steppe populations for 5000 years. Nat. Ecol. Evol. 4, 346–355 (2020).
doi: 10.1038/s41559-020-1120-y
Evershed, R. P. et al. Earliest date for milk use in the Near East and southeastern Europe linked to cattle herding. Nature 455, 528–531 (2008).
doi: 10.1038/nature07180
Greenfield, H. J. & Arnold, E. R. Go(a)t milk? New perspectives on the zooarchaeological evidence for the earliest intensification of dairying in south eastern Europe. World Archaeol. 47, 792–818 (2015).
doi: 10.1080/00438243.2015.1029076
Marco, M. L. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on fermented foods. Nat. Rev. Gastroenterol. Hepatol. 18, 196–208 (2021).
doi: 10.1038/s41575-020-00390-5
Gänzle, M. The periodic table of fermented foods: limitations and opportunities. Appl. Microbiol. Biotechnol. 106, 2815–2826 (2022).
Castro, G. R., Nadda, A. K., Nguyen, T. A., Sharma, S. & Bilal, M. Nanomaterials for Bioreactors and Bioprocessing Applications. (Elsevier, 2023).
Gibbons, J. G. & Rinker, D. C. The genomics of microbial domestication in the fermented food environment. Curr. Opin. Genet. Dev. 35, 1–8 (2015).
doi: 10.1016/j.gde.2015.07.003
Warinner, C. An archaeology of microbes. J. Anthropol. Res. 78, 420–458 (2022).
doi: 10.1086/721976
Swanson, K. S. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of synbiotics. Nat. Rev. Gastroenterol. Hepatol. 17, 687–701 (2020).
doi: 10.1038/s41575-020-0344-2
Arias-Sánchez, F. I., Vessman, B. & Mitri, S. Artificially selecting microbial communities: If we can breed dogs, why not microbiomes? PLoS Biol. 17, e3000356 (2019).
doi: 10.1371/journal.pbio.3000356
Douglas, G. L. & Klaenhammer, T. R. Genomic evolution of domesticated microorganisms. Annu Rev. Food Sci. Technol. 1, 397–414 (2010).
doi: 10.1146/annurev.food.102308.124134
Dunn, R. R., Wilson, J., Nichols, L. M. & Gavin, M. C. Toward a global ecology of fermented foods. Curr. Anthropol. 62, S220–S232 (2021).
doi: 10.1086/716014
Peter, J. et al. Genome evolution across 1,011 Saccharomyces cerevisiae isolates. Nature 556, 339–344 (2018).
doi: 10.1038/s41586-018-0030-5
Gonçalves, M. et al. Distinct domestication trajectories in top-fermenting beer yeasts and wine yeasts. Curr. Biol. 26, 2750–2761 (2016).
doi: 10.1016/j.cub.2016.08.040
Gallone, B. et al. Domestication and divergence of saccharomyces cerevisiae beer yeasts. Cell 166, 1397–410 (2016).
doi: 10.1016/j.cell.2016.08.020
Gibbons, J. G. et al. The evolutionary imprint of domestication on genome variation and function of the filamentous fungus Aspergillus oryzae. Curr. Biol. 22, 1403–1409 (2012).
doi: 10.1016/j.cub.2012.05.033
Ropars, J. et al. Domestication of the emblematic white cheese-making fungus Penicillium camemberti and its diversification into two varieties. Curr. Biol. 30, 4441–53 (2020).
doi: 10.1016/j.cub.2020.08.082
Steensels, J., Gallone, B., Voordeckers, K. & Verstrepen, K. J. Domestication of industrial microbes. Curr. Biol. 29, R381–R393 (2019).
doi: 10.1016/j.cub.2019.04.025
Landis, E. A. et al. The diversity and function of sourdough starter microbiomes. Elife 10, e61644 (2021).
Kelly, W. J., Ward, L. J. H. & Leahy, S. C. Chromosomal diversity in Lactococcus lactis and the origin of dairy starter cultures. Genome Biol. Evol. 2, 729–744 (2010).
Marcobal, A. M., Sela, D. A., Wolf, Y. I., Makarova, K. S. & Mills, D. A. Role of hypermutability in the evolution of the genus Oenococcus. J. Bacteriol. 190, 564–570 (2008).
doi: 10.1128/JB.01457-07
Smokvina, T. et al. Lactobacillus paracasei comparative genomics: towards species pan-genome definition and exploitation of diversity. PLoS ONE 8, e68731 (2013).
doi: 10.1371/journal.pone.0068731
Roux, E. et al. The genomic basis of the Streptococcus thermophilus health-promoting properties. BMC Genom. 23, 210 (2022).
doi: 10.1186/s12864-022-08459-y
Hill, C. & Paul Ross R. Genetic Modification in the Food Industry. (1998).
Bolotin, A. et al. Complete sequence and comparative genome analysis of the dairy bacterium Streptococcus thermophilus. Nat. Biotechnol. 22, 1554–1558 (2004).
doi: 10.1038/nbt1034
van de Guchte, M. et al. The complete genome sequence of Lactobacillus bulgaricus reveals extensive and ongoing reductive evolution. Proc. Natl. Acad. Sci. USA 103, 9274–9279 (2006).
doi: 10.1073/pnas.0603024103
Schmid, M. et al. Comparative genomics of completely sequenced lactobacillus helveticus genomes provides insights into strain-specific genes and resolves metagenomics data down to the strain level. Front. Microbiol. 9, 63 (2018).
doi: 10.3389/fmicb.2018.00063
Alexandraki, V. et al. Comparative genomics of streptococcus thermophilus support important traits concerning the evolution, biology and technological properties of the species. Front. Microbiol. 10, 2916 (2019).
doi: 10.3389/fmicb.2019.02916
Baek, M. G., Kim, K. W. & Yi, H. Subspecies-level genome comparison of Lactobacillus delbrueckii. Sci. Rep. 13, 3171 (2023).
doi: 10.1038/s41598-023-29404-3
Somerville, V. et al. Functional strain redundancy and persistent phage infection in Swiss hard cheese starter cultures. ISME J. 16, 388–399 (2022).
doi: 10.1038/s41396-021-01071-0
Sieuwerts, S., de Bok, F. A. M., Hugenholtz, J. & van Hylckama Vlieg, J. E. T. Unraveling microbial interactions in food fermentations: from classical to genomics approaches. Appl. Environ. Microbiol. 74, 4997–5007 (2008).
doi: 10.1128/AEM.00113-08
Sieuwerts, S. et al. Mixed-culture transcriptome analysis reveals the molecular basis of mixed-culture growth in Streptococcus thermophilus and Lactobacillus bulgaricus. Appl Environ. Microbiol. 76, 7775–7784 (2010).
doi: 10.1128/AEM.01122-10
Iskandar, C. F., Cailliez-Grimal, C., Borges, F. & Revol-Junelles, A. M. Review of lactose and galactose metabolism in Lactic Acid Bacteria dedicated to expert genomic annotation. Trends Food Sci. Technol. 88, 121–132 (2019).
doi: 10.1016/j.tifs.2019.03.020
Milanese, A. et al. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun. 10, 1014 (2019).
doi: 10.1038/s41467-019-08844-4
Smid, E. J. & Lacroix, C. Microbe–microbe interactions in mixed culture food fermentations. Curr. Opin. Biotechnol. 24, 148–154 (2013).
doi: 10.1016/j.copbio.2012.11.007
Sieuwerts, S. Microbial interactions in the yoghurt consortium: Current status and product implications. SOJ Microbiol. Infect. Dis. 4, 01–05 (2016).
doi: 10.15226/sojmid/4/2/00150
Fontana, F. et al. Multifactorial microvariability of the Italian raw milk cheese microbiota and implication for current regulatory scheme. mSystems 8, e0106822 (2023).
doi: 10.1128/msystems.01068-22
Kamilari, E., Tsaltas, D., Stanton, C. & Ross, R. P. Metataxonomic mapping of the microbial diversity of Irish and Eastern mediterranean cheeses. Foods 11, 2483 (2022).
Lees, J. A. et al. Fast and flexible bacterial genomic epidemiology with PopPUNK. Genome Res. 29, 304–316 (2019).
doi: 10.1101/gr.241455.118
Rodriguez-R, L. M. et al. An ANI gap within bacterial species that advances the definitions of intra-species units. MBio 15, e0269623 (2024).
doi: 10.1128/mbio.02696-23
McGovern, P. E. & Hall, G. R. Charting a future course for organic residue analysis in archaeology. J. Archaeol. Method Theory 23, 592–622 (2016).
doi: 10.1007/s10816-015-9253-z
Stott, A. W. et al. Direct dating of archaeological pottery by compound-specific 14C analysis of preserved lipids. Anal. Chem. 75, 5037–5045 (2003).
doi: 10.1021/ac020743y
Pasolli, E. et al. Large-scale genome-wide analysis links lactic acid bacteria from food with the gut microbiome. Nat. Commun. 11, 2610 (2020).
doi: 10.1038/s41467-020-16438-8
Pickrell, J. How the earliest mammals thrived alongside dinosaurs. Nature 574, 468–472 (2019).
doi: 10.1038/d41586-019-03170-7
Kuo, C. H. & Ochman, H. Inferring clocks when lacking rocks: the variable rates of molecular evolution in bacteria. Biol. Direct 4, 35 (2009).
doi: 10.1186/1745-6150-4-35
Didelot, X., Croucher, N. J., Bentley, S. D., Harris, S. R. & Wilson, D. J. Bayesian inference of ancestral dates on bacterial phylogenetic trees. Nucleic Acids Res. 46, e134 (2018).
doi: 10.1093/nar/gky783
Didelot, X., Sarah Walker, A., Peto, T. E., Crook, D. W. & Wilson, D. J. Within-host evolution of bacterial pathogens. Nat. Rev. Microbiol. 14, 150–162 (2016).
doi: 10.1038/nrmicro.2015.13
Zhao, S. et al. Adaptive evolution within gut microbiomes of healthy People. Cell Host Microbe 25, 656–67 (2019).
doi: 10.1016/j.chom.2019.03.007
Goh, Y. J., Goin, C., O’Flaherty, S., Altermann, E. & Hutkins, R. Specialized adaptation of a lactic acid bacterium to the milk environment: the comparative genomics of Streptococcus thermophilus LMD-9. Micro. Cell Fact. 10, S22 (2011).
doi: 10.1186/1475-2859-10-S1-S22
Hottes, A. K. et al. Bacterial adaptation through loss of function. PLoS Genet. 9, e1003617 (2013).
doi: 10.1371/journal.pgen.1003617
Ochman, H. & Moran, N. A. Genes lost and genes found: evolution of bacterial pathogenesis and symbiosis. Science 292, 1096–1099 (2001).
doi: 10.1126/science.1058543
Bogaard, A. et al. Reconsidering domestication from a process archaeology perspective. World Archaeol. 53, 56–77 (2021).
doi: 10.1080/00438243.2021.1954990
Zeder, M. A. The domestication of animals. J. Anthropol. Res. 68, 161–190 (2012).
doi: 10.3998/jar.0521004.0068.201
Grizon, A. et al. Genomic characterization of wild lactobacillus delbrueckii strains reveals low diversity but strong typicity. Microorganisms 12, 512 (2024).
doi: 10.3390/microorganisms12030512
Somerville, V. et al. Extensive diversity and rapid turnover of phage defense repertoires in cheese-associated bacterial communities. Microbiome 10, 137 (2022).
doi: 10.1186/s40168-022-01328-6
Somerville, V. et al. Long-read based de novo assembly of low-complexity metagenome samples results in finished genomes and reveals insights into strain diversity and an active phage system. BMC Microbiol. 19, 143 (2019).
doi: 10.1186/s12866-019-1500-0
Oechslin, F. et al. Fermentation practices select for thermostable endolysins in phages. Mol. Biol. Evol. 41, msae055 (2024).
El Kafsi, H. et al. Lactobacillus delbrueckii ssp. lactis and ssp. bulgaricus: a chronicle of evolution in action. BMC Genom. 15, 407 (2014).
doi: 10.1186/1471-2164-15-407
Molinet, J. et al. Wild Patagonian yeast improve the evolutionary potential of novel interspecific hybrid strains for lager brewing. PLoS Genet. 20, e1011154 (2024).
doi: 10.1371/journal.pgen.1011154
Duan, S. F. et al. The origin and adaptive evolution of domesticated populations of yeast from Far East Asia. Nat. Commun. 9, 2690 (2018).
doi: 10.1038/s41467-018-05106-7
Walter, J. Ecological role of lactobacilli in the gastrointestinal tract: implications for fundamental and biomedical research. Appl. Environ. Microbiol. 74, 4985–4996 (2008).
doi: 10.1128/AEM.00753-08
Duar, R. M. et al. Lifestyles in transition: evolution and natural history of the genus Lactobacillus. FEMS Microbiol. Rev. 41, S27–S48 (2017).
doi: 10.1093/femsre/fux030
De Filippis, F., Pasolli, E. & Ercolini, D. The food-gut axis: lactic acid bacteria and their link to food, the gut microbiome and human health. FEMS Microbiol. Rev. 44, 454–489 (2020).
doi: 10.1093/femsre/fuaa015
Fleischmann, W. Das Molkereiwesen: Ein Buch für Praxis und Wissenschaft. Zugleich als vierter Theil zu Otto-Birnbaun’s Lehrbuch der landwirthschaftlichen Gewerbe. (F. Vieweg & Sohn, 1876).
Moser, A., Berthoud, H., Eugster, E., Meile, L. & Irmler, S. Detection and enumeration of Lactobacillus helveticus in dairy products. Int. Dairy J. 68, 52–59 (2017).
doi: 10.1016/j.idairyj.2016.12.007
Shani, N., Isolini, D., Marzohl, D. & Berthoud, H. Evaluation of a new culture medium for the enumeration and isolation of Streptococcus salivarius subsp. thermophilus from cheese. Food Microbiol. 95, 103672 (2021).
Vingataramin, L. & Frost, E. H. A single protocol for extraction of gDNA from bacteria and yeast. Biotechniques 58, 120–125 (2015).
doi: 10.2144/000114263
Martin, M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet. J. 17, 10 (2011).
doi: 10.14806/ej.17.1.200
Li, H. & Durbin, R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26, 589–595 (2010).
doi: 10.1093/bioinformatics/btp698
Bankevich, A. et al. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19, 455–477 (2012).
doi: 10.1089/cmb.2012.0021
Kolmogorov, M., Yuan, J., Lin, Y. & Pevzner, P. A. Assembly of long error-prone reads using repeat graphs. 37, 540–546 (2019).
Vaser, R., Sović, I., Nagarajan, N. & Šikić, M. Fast and accurate de novo genome assembly from long uncorrected reads. Genome Res. 27, 737–746 (2017).
doi: 10.1101/gr.214270.116
Garrison, E. & Marth G. Haplotype-based variant detection from short-read sequencing. Preprint at arXiv (2012).
Tatusova, T. et al. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44, 6614–6624 (2016).
doi: 10.1093/nar/gkw569
Rodríguez Del Río, Á. et al. Functional and evolutionary significance of unknown genes from uncultivated taxa. Nature 626, 377–384 (2023).
Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T. & Aluru, S. High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9, 5114 (2018).
doi: 10.1038/s41467-018-07641-9
Emms, D. M. & Kelly, S. OrthoFinder: phylogenetic orthology inference for comparative genomics. Genome Biol. 20, 238 (2019).
doi: 10.1186/s13059-019-1832-y
Li, H. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at arXiv (2013).
Danecek, P. et al. The variant call format and VCFtools. Bioinformatics 27, 2156–2158 (2011).
doi: 10.1093/bioinformatics/btr330
Baets, G. D. et al. SNPeffect 4.0: on-line prediction of molecular and structural effects of protein-coding variants. Nucleic Acids Res. 40, D935–D939 (2012).
doi: 10.1093/nar/gkr996
Katoh, K. & Standley, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780 (2013).
doi: 10.1093/molbev/mst010
Kozlov, A. M., Darriba, D., Flouri, T., Morel, B. & Stamatakis, A. RAxML-NG: a fast, scalable and user-friendly tool for maximum likelihood phylogenetic inference. Bioinformatics 35, 4453–4455 (2019).
doi: 10.1093/bioinformatics/btz305
Yu, G., Smith, D. K., Zhu, H., Guan, Y. & Lam, T. T. ggtree: an r package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 8, 28–36 (2017).
doi: 10.1111/2041-210X.12628
Ellegaard, K. M. & Engel, P. Genomic diversity landscape of the honey bee gut microbiota. Nat. Commun. 10, 446 (2019).
doi: 10.1038/s41467-019-08303-0
Katoh, K., Misawa, K., Kuma, K. I. & Miyata, T. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Res. 30, 3059–3066 (2002).
doi: 10.1093/nar/gkf436
Didelot, X. & Wilson, D. J. ClonalFrameML: Efficient inference of recombination in whole bacterial genomes. PLOS Comput. Biol. 11, e1004041 (2015).
doi: 10.1371/journal.pcbi.1004041
Paradis, E. & Schliep, K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics 35, 526–528 (2018).
doi: 10.1093/bioinformatics/bty633
Kopylova, E., Noé, L. & Touzet, H. SortMeRNA: fast and accurate filtering of ribosomal RNAs in metatranscriptomic data. Bioinformatics 28, 3211–3217 (2012).
doi: 10.1093/bioinformatics/bts611
Anders, S., Pyl, P. T. & Huber, W. HTSeq—a Python framework to work with high-throughput sequencing data. Bioinformatics 31, 166–169 (2014).
doi: 10.1093/bioinformatics/btu638
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550 (2014).
doi: 10.1186/s13059-014-0550-8
Vaas, L. A. I., Sikorski, J., Michael, V., Göker, M. & Klenk, H. P. Visualization and curve-parameter estimation strategies for efficient exploration of phenotype microarray kinetics. PLoS ONE 7, e34846 (2012).
doi: 10.1371/journal.pone.0034846
Borshchevskaya, L. N., Gordeeva, T. L., Kalinina, A. N., & Sineokii, S. P. Spectrophotometric determination of lactic acid. J. Anal. Chem. 71, 755–758 (2016).
Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 67, 1–48 (2015).
doi: 10.18637/jss.v067.i01
Wilkinson, L. ggplot2: Elegant graphics for data analysis by WICKHAM, H. Biometrics 67, 678–679 (2011).
doi: 10.1111/j.1541-0420.2011.01616.x