MethylSeqLogo: DNA methylation smart sequence logos.


Journal

BMC bioinformatics
ISSN: 1471-2105
Titre abrégé: BMC Bioinformatics
Pays: England
ID NLM: 100965194

Informations de publication

Date de publication:
09 Oct 2024
Historique:
received: 10 11 2022
accepted: 08 08 2024
medline: 10 10 2024
pubmed: 10 10 2024
entrez: 9 10 2024
Statut: epublish

Résumé

Some transcription factors, MYC for example, bind sites of potentially methylated DNA. This may increase binding specificity as such sites are (1) highly under-represented in the genome, and (2) offer additional, tissue specific information in the form of hypo- or hyper-methylation. Fortunately, bisulfite sequencing data can be used to investigate this phenomenon. We developed MethylSeqLogo, an extension of sequence logos which includes new elements to indicate DNA methylation and under-represented dimers in each position of a set binding sites. Our method displays information from both DNA strands, and takes into account the sequence context (CpG or other) and genome region (promoter versus whole genome) appropriate to properly assess the expected background dimer frequency and level of methylation. MethylSeqLogo preserves sequence logo semantics-the relative height of nucleotides within a column represents their proportion in the binding sites, while the absolute height of each column represents information (relative entropy) and the height of all columns added together represents total information RESULTS: We present figures illustrating the utility of using MethylSeqLogo to summarize data from several CpG binding transcription factors. The logos show that unmethylated CpG binding sites are a feature of transcription factors such as MYC and ZBTB33, while some other CpG binding transcription factors, such as CEBPB, appear methylation neutral. Our software enables users to explore bisulfite and ChIP sequencing data sets-and in the process obtain publication quality figures.

Sections du résumé

BACKGROUND BACKGROUND
Some transcription factors, MYC for example, bind sites of potentially methylated DNA. This may increase binding specificity as such sites are (1) highly under-represented in the genome, and (2) offer additional, tissue specific information in the form of hypo- or hyper-methylation. Fortunately, bisulfite sequencing data can be used to investigate this phenomenon.
METHOD METHODS
We developed MethylSeqLogo, an extension of sequence logos which includes new elements to indicate DNA methylation and under-represented dimers in each position of a set binding sites. Our method displays information from both DNA strands, and takes into account the sequence context (CpG or other) and genome region (promoter versus whole genome) appropriate to properly assess the expected background dimer frequency and level of methylation. MethylSeqLogo preserves sequence logo semantics-the relative height of nucleotides within a column represents their proportion in the binding sites, while the absolute height of each column represents information (relative entropy) and the height of all columns added together represents total information RESULTS: We present figures illustrating the utility of using MethylSeqLogo to summarize data from several CpG binding transcription factors. The logos show that unmethylated CpG binding sites are a feature of transcription factors such as MYC and ZBTB33, while some other CpG binding transcription factors, such as CEBPB, appear methylation neutral.
CONCLUSIONS CONCLUSIONS
Our software enables users to explore bisulfite and ChIP sequencing data sets-and in the process obtain publication quality figures.

Identifiants

pubmed: 39385066
doi: 10.1186/s12859-024-05896-2
pii: 10.1186/s12859-024-05896-2
doi:

Substances chimiques

Transcription Factors 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

326

Subventions

Organisme : Ministry of Science and Technology, Taiwan
ID : 108-2218-E-006-057-MY3

Informations de copyright

© 2024. The Author(s).

Références

Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009;10(4):252–63.
pubmed: 19274049 doi: 10.1038/nrg2538
Spitz F, Furlong EE. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012;13(9):613–26.
pubmed: 22868264 doi: 10.1038/nrg3207
Liu Y, Chen S, Wang S, Soares F, Fischer M, Meng F, et al. Transcriptional landscape of the human cell cycle. Proc Natl Acad Sci USA. 2017;114(13):3473–8.
pubmed: 28289232 pmcid: 5380023 doi: 10.1073/pnas.1617636114
Bhagwat AS, Vakoc CR. Targeting transcription factors in cancer. Trends Cancer. 2015;1(1):53–65.
pubmed: 26645049 pmcid: 4669894 doi: 10.1016/j.trecan.2015.07.001
Mitchell SM, Frayling TM. The role of transcription factors in maturity-onset diabetes of the young. Mol Genet Metab. 2002;77(1–2):35–43.
pubmed: 12359128 doi: 10.1016/S1096-7192(02)00150-6
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172(4):650–65.
pubmed: 29425488 doi: 10.1016/j.cell.2018.01.029
Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18(20):6097–100.
pubmed: 2172928 pmcid: 332411 doi: 10.1093/nar/18.20.6097
Dey KK, Xie D, Stephens M. A new sequence logo plot to highlight enrichment and depletion. BMC Bioinform. 2018;19(1):473.
doi: 10.1186/s12859-018-2489-3
Kiesel A, Roth C, Ge WW, Wess M, Meier M, Söding J. The BaMM web server for de-novo motif discovery and regulatory sequence analysis. Nucleic Acids Res. 2018;46(W1):W215-20.
pubmed: 29846656 pmcid: 6030882 doi: 10.1093/nar/gky431
Siebert M, Söding J. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences. Nucleic Acids Res. 2016;44(13):6055–69.
pubmed: 27288444 pmcid: 5291271 doi: 10.1093/nar/gkw521
Xin B, Rohs R. Relationship between histone modifications and transcription factor binding is protein family specific. Genome Res. 2018;28:321–33.
pubmed: 29326300 pmcid: 5848611 doi: 10.1101/gr.220079.116
Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993;3(2):226–31.
pubmed: 8504247 doi: 10.1016/0959-437X(93)90027-M
Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet. 2016;17(9):551–65.
pubmed: 27479905 pmcid: 5559737 doi: 10.1038/nrg.2016.83
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017;356(6337):eaaj2239.
pubmed: 28473536 pmcid: 8009048 doi: 10.1126/science.aaj2239
Hérberlé É, Bardet AF. Sensitivity of transcription factors to DNA methylation. Essays Biochem. 2019;63(6):727–41.
doi: 10.1042/EBC20190033
Kribelbauer JF, Lu XJ, Rohs R, Mann RS, Bussemaker HJ. Toward a mechanistic understanding of DNA methylation readout by transcription factors. J Mol Biol. 2019. https://doi.org/10.1016/j.jmb.2019.10.021 .
doi: 10.1016/j.jmb.2019.10.021 pubmed: 31689433 pmcid: 6961349
Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res. 2009;19(6):959–66.
pubmed: 19273618 pmcid: 3807530 doi: 10.1101/gr.083451.108
Viner C, Johnson J, Walker N, Shi H, Sjöberg M, Adams DJ, et al. Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet. bioRxiv. 2016.
Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015;161(6):1437–52.
pubmed: 26046443 doi: 10.1016/j.cell.2015.05.015
Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan-Calvopina J, Chen PY, et al. DNA demethylation dynamics in the human prenatal germline. Cell. 2015;161(6):1425–36.
pubmed: 26004067 pmcid: 4458157 doi: 10.1016/j.cell.2015.05.012
Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat. 1951;22(1):79–86.
doi: 10.1214/aoms/1177729694
Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. Information content of binding sites on nucleotide sequences. J Mol Biol. 1986;188(3):415–31.
pubmed: 3525846 doi: 10.1016/0022-2836(86)90165-8
Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.
doi: 10.1038/nature11247
Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46(D1):D1284.
pubmed: 29161433 doi: 10.1093/nar/gkx1188
Chèneby J, Gheorghe M, Artufel M, Mathelier A, Ballester B. ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments. Nucleic Acids Res. 2018;46(D1):D267-75.
pubmed: 29126285 doi: 10.1093/nar/gkx1092
Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Genom Hum Genet. 2006;7(1):29–59.
doi: 10.1146/annurev.genom.7.080505.115623
Beaulieu ME, Castillo F, Soucek L. Structural and biophysical insights into the function of the intrinsically disordered Myc oncoprotein. Cells. 2020;9(4):1038.
pubmed: 32331235 pmcid: 7226237 doi: 10.3390/cells9041038
Perini G, Diolaiti D, Porro A, Della VG. In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci USA. 2005;102(34):12117–22.
pubmed: 16093321 pmcid: 1184034 doi: 10.1073/pnas.0409097102
Daniel JM, Reynolds AB. The catenin p[Formula: see text] interacts with kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol. 1999;19(5):3614–23.
pubmed: 10207085 pmcid: 84161 doi: 10.1128/MCB.19.5.3614
Pierrea CC, Hercules SM, Yates C, Daniel JM. Dancing from bottoms up: roles of the POZ-ZF transcription factor Kaiso in cancer. Biochim Biophys Acta Rev Cancer. 2019;1871(1):64–74.
doi: 10.1016/j.bbcan.2018.10.005
Daniel JM, Spring CM, Crawford HC, Reynolds AB, Baig A. The p[Formula: see text]-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res. 2002;30(13):2911–9.
pubmed: 12087177 pmcid: 117053 doi: 10.1093/nar/gkf398
Raghav SK, Waszak SM, Krier I, Gubelmann C, Isakova A, Mikkelsen TS, et al. Integrative genomics identifies the corepressor SMRT as a gatekeeper of adipogenesis through the transcription factors C/EBPb and KAISO. Mol Cell. 2012;46(3):335–50.
pubmed: 22521691 doi: 10.1016/j.molcel.2012.03.017
Blattler A, Yao L, Wang Y, Ye Z, Jin VX, Farnham PJ. ZBTB33 binds unmethylated regions of the genome associated with actively expressed genes. Epigenet Chromatin. 2013;6(13):1–18.
Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi BZ, Cedar H. DNA methylation represses transcription in vivo. Nat Genet. 1999;22(2):203–6.
pubmed: 10369268 doi: 10.1038/9727
Wang G, Luo X, Wang J, Wan J, Xia S, Zhu H, et al. MeDReaders: a database for transcription factors that bind to methylated DNA. Nucleic Acids Res. 2018;46(D1):D146-51.
pubmed: 29145608 doi: 10.1093/nar/gkx1096
Xuan Lin QX, Sian S, An O, Thieffry D, Jha S, Benoukraf T. MethMotif: an integrative cell specific database of transcription factor binding motifs coupled with DNA methylation profiles. Nucleic Acids Res. 2019;47(D1):D145-54.
pubmed: 30380113 doi: 10.1093/nar/gky1005
Zuo Z, Roy B, Chang YK, Granas D, Stormo GD. Measuring quantitative effects of methylation on transcription factor-DNA binding affinity. Epigenet Chromatin. 2014;3(35):eaao1799.
Shi DQ, Ali I, Tang J, Yang WC. New insights into 5hmC DNA modification: generation, distribution and function. Front Genet. 2017;8:100.
pubmed: 28769976 pmcid: 5515870 doi: 10.3389/fgene.2017.00100
Sayeed SK, Zhao J, Sathyanarayana BK, Golla JP, Vinson C. C/EBPβ (CEBPB) protein binding to the C/EBP|CRE DNA 8-mer TTGC|GTCA is inhibited by 5hmC and enhanced by 5mC, 5fC, and 5caC in the CG dinucleotide. Biochim Biophys Acta. 2015;1849(6):583–9.
pubmed: 25779641 doi: 10.1016/j.bbagrm.2015.03.002
Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 2010;38(11): e125.
pubmed: 20371518 pmcid: 2887978 doi: 10.1093/nar/gkq223
Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE. 2010;5(1): e8888.
pubmed: 20126651 pmcid: 2811190 doi: 10.1371/journal.pone.0008888
Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012;149(6):1368–80.
pubmed: 22608086 pmcid: 3589129 doi: 10.1016/j.cell.2012.04.027
Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, et al. The human epigenome browser at Washington University. Nat Methods. 2011;8(12):989–90.
pubmed: 22127213 pmcid: 3552640 doi: 10.1038/nmeth.1772
Shen L, Shao N, Liu X, Nestler E. ngs.plot: quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genom. 2014;15(284):1–14.

Auteurs

Fei-Man Hsu (FM)

Department of Molecular Cell and Developmental Biology, University of California, Los Angeles, USA.

Paul Horton (P)

Department of Computer Science and Information Engineering, National Cheng Kung University, 1 University Road, Tainan, 70101, Taiwan. paulh@iscb.org.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C

Classifications MeSH