MethylSeqLogo: DNA methylation smart sequence logos.
DNA methylation
Transcription Factor Binding Sites
Visualization
Journal
BMC bioinformatics
ISSN: 1471-2105
Titre abrégé: BMC Bioinformatics
Pays: England
ID NLM: 100965194
Informations de publication
Date de publication:
09 Oct 2024
09 Oct 2024
Historique:
received:
10
11
2022
accepted:
08
08
2024
medline:
10
10
2024
pubmed:
10
10
2024
entrez:
9
10
2024
Statut:
epublish
Résumé
Some transcription factors, MYC for example, bind sites of potentially methylated DNA. This may increase binding specificity as such sites are (1) highly under-represented in the genome, and (2) offer additional, tissue specific information in the form of hypo- or hyper-methylation. Fortunately, bisulfite sequencing data can be used to investigate this phenomenon. We developed MethylSeqLogo, an extension of sequence logos which includes new elements to indicate DNA methylation and under-represented dimers in each position of a set binding sites. Our method displays information from both DNA strands, and takes into account the sequence context (CpG or other) and genome region (promoter versus whole genome) appropriate to properly assess the expected background dimer frequency and level of methylation. MethylSeqLogo preserves sequence logo semantics-the relative height of nucleotides within a column represents their proportion in the binding sites, while the absolute height of each column represents information (relative entropy) and the height of all columns added together represents total information RESULTS: We present figures illustrating the utility of using MethylSeqLogo to summarize data from several CpG binding transcription factors. The logos show that unmethylated CpG binding sites are a feature of transcription factors such as MYC and ZBTB33, while some other CpG binding transcription factors, such as CEBPB, appear methylation neutral. Our software enables users to explore bisulfite and ChIP sequencing data sets-and in the process obtain publication quality figures.
Sections du résumé
BACKGROUND
BACKGROUND
Some transcription factors, MYC for example, bind sites of potentially methylated DNA. This may increase binding specificity as such sites are (1) highly under-represented in the genome, and (2) offer additional, tissue specific information in the form of hypo- or hyper-methylation. Fortunately, bisulfite sequencing data can be used to investigate this phenomenon.
METHOD
METHODS
We developed MethylSeqLogo, an extension of sequence logos which includes new elements to indicate DNA methylation and under-represented dimers in each position of a set binding sites. Our method displays information from both DNA strands, and takes into account the sequence context (CpG or other) and genome region (promoter versus whole genome) appropriate to properly assess the expected background dimer frequency and level of methylation. MethylSeqLogo preserves sequence logo semantics-the relative height of nucleotides within a column represents their proportion in the binding sites, while the absolute height of each column represents information (relative entropy) and the height of all columns added together represents total information RESULTS: We present figures illustrating the utility of using MethylSeqLogo to summarize data from several CpG binding transcription factors. The logos show that unmethylated CpG binding sites are a feature of transcription factors such as MYC and ZBTB33, while some other CpG binding transcription factors, such as CEBPB, appear methylation neutral.
CONCLUSIONS
CONCLUSIONS
Our software enables users to explore bisulfite and ChIP sequencing data sets-and in the process obtain publication quality figures.
Identifiants
pubmed: 39385066
doi: 10.1186/s12859-024-05896-2
pii: 10.1186/s12859-024-05896-2
doi:
Substances chimiques
Transcription Factors
0
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
326Subventions
Organisme : Ministry of Science and Technology, Taiwan
ID : 108-2218-E-006-057-MY3
Informations de copyright
© 2024. The Author(s).
Références
Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM. A census of human transcription factors: function, expression and evolution. Nat Rev Genet. 2009;10(4):252–63.
pubmed: 19274049
doi: 10.1038/nrg2538
Spitz F, Furlong EE. Transcription factors: from enhancer binding to developmental control. Nat Rev Genet. 2012;13(9):613–26.
pubmed: 22868264
doi: 10.1038/nrg3207
Liu Y, Chen S, Wang S, Soares F, Fischer M, Meng F, et al. Transcriptional landscape of the human cell cycle. Proc Natl Acad Sci USA. 2017;114(13):3473–8.
pubmed: 28289232
pmcid: 5380023
doi: 10.1073/pnas.1617636114
Bhagwat AS, Vakoc CR. Targeting transcription factors in cancer. Trends Cancer. 2015;1(1):53–65.
pubmed: 26645049
pmcid: 4669894
doi: 10.1016/j.trecan.2015.07.001
Mitchell SM, Frayling TM. The role of transcription factors in maturity-onset diabetes of the young. Mol Genet Metab. 2002;77(1–2):35–43.
pubmed: 12359128
doi: 10.1016/S1096-7192(02)00150-6
Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y, Albu M, et al. The human transcription factors. Cell. 2018;172(4):650–65.
pubmed: 29425488
doi: 10.1016/j.cell.2018.01.029
Schneider TD, Stephens RM. Sequence logos: a new way to display consensus sequences. Nucleic Acids Res. 1990;18(20):6097–100.
pubmed: 2172928
pmcid: 332411
doi: 10.1093/nar/18.20.6097
Dey KK, Xie D, Stephens M. A new sequence logo plot to highlight enrichment and depletion. BMC Bioinform. 2018;19(1):473.
doi: 10.1186/s12859-018-2489-3
Kiesel A, Roth C, Ge WW, Wess M, Meier M, Söding J. The BaMM web server for de-novo motif discovery and regulatory sequence analysis. Nucleic Acids Res. 2018;46(W1):W215-20.
pubmed: 29846656
pmcid: 6030882
doi: 10.1093/nar/gky431
Siebert M, Söding J. Bayesian Markov models consistently outperform PWMs at predicting motifs in nucleotide sequences. Nucleic Acids Res. 2016;44(13):6055–69.
pubmed: 27288444
pmcid: 5291271
doi: 10.1093/nar/gkw521
Xin B, Rohs R. Relationship between histone modifications and transcription factor binding is protein family specific. Genome Res. 2018;28:321–33.
pubmed: 29326300
pmcid: 5848611
doi: 10.1101/gr.220079.116
Tate PH, Bird AP. Effects of DNA methylation on DNA-binding proteins and gene expression. Curr Opin Genet Dev. 1993;3(2):226–31.
pubmed: 8504247
doi: 10.1016/0959-437X(93)90027-M
Zhu H, Wang G, Qian J. Transcription factors as readers and effectors of DNA methylation. Nat Rev Genet. 2016;17(9):551–65.
pubmed: 27479905
pmcid: 5559737
doi: 10.1038/nrg.2016.83
Yin Y, Morgunova E, Jolma A, Kaasinen E, Sahu B, Khund-Sayeed S, et al. Impact of cytosine methylation on DNA binding specificities of human transcription factors. Science. 2017;356(6337):eaaj2239.
pubmed: 28473536
pmcid: 8009048
doi: 10.1126/science.aaj2239
Hérberlé É, Bardet AF. Sensitivity of transcription factors to DNA methylation. Essays Biochem. 2019;63(6):727–41.
doi: 10.1042/EBC20190033
Kribelbauer JF, Lu XJ, Rohs R, Mann RS, Bussemaker HJ. Toward a mechanistic understanding of DNA methylation readout by transcription factors. J Mol Biol. 2019. https://doi.org/10.1016/j.jmb.2019.10.021 .
doi: 10.1016/j.jmb.2019.10.021
pubmed: 31689433
pmcid: 6961349
Lister R, Ecker JR. Finding the fifth base: genome-wide sequencing of cytosine methylation. Genome Res. 2009;19(6):959–66.
pubmed: 19273618
pmcid: 3807530
doi: 10.1101/gr.083451.108
Viner C, Johnson J, Walker N, Shi H, Sjöberg M, Adams DJ, et al. Modeling methyl-sensitive transcription factor motifs with an expanded epigenetic alphabet. bioRxiv. 2016.
Guo F, Yan L, Guo H, Li L, Hu B, Zhao Y, et al. The transcriptome and DNA methylome landscapes of human primordial germ cells. Cell. 2015;161(6):1437–52.
pubmed: 26046443
doi: 10.1016/j.cell.2015.05.015
Gkountela S, Zhang KX, Shafiq TA, Liao WW, Hargan-Calvopina J, Chen PY, et al. DNA demethylation dynamics in the human prenatal germline. Cell. 2015;161(6):1425–36.
pubmed: 26004067
pmcid: 4458157
doi: 10.1016/j.cell.2015.05.012
Kullback S, Leibler RA. On information and sufficiency. Ann Math Stat. 1951;22(1):79–86.
doi: 10.1214/aoms/1177729694
Schneider TD, Stormo GD, Gold L, Ehrenfeucht A. Information content of binding sites on nucleotide sequences. J Mol Biol. 1986;188(3):415–31.
pubmed: 3525846
doi: 10.1016/0022-2836(86)90165-8
Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489(7414):57–74.
doi: 10.1038/nature11247
Khan A, Fornes O, Stigliani A, Gheorghe M, Castro-Mondragon JA, van der Lee R, et al. JASPAR 2018: update of the open-access database of transcription factor binding profiles and its web framework. Nucleic Acids Res. 2018;46(D1):D1284.
pubmed: 29161433
doi: 10.1093/nar/gkx1188
Chèneby J, Gheorghe M, Artufel M, Mathelier A, Ballester B. ReMap 2018: an updated atlas of regulatory regions from an integrative analysis of DNA-binding ChIP-seq experiments. Nucleic Acids Res. 2018;46(D1):D267-75.
pubmed: 29126285
doi: 10.1093/nar/gkx1092
Maston GA, Evans SK, Green MR. Transcriptional regulatory elements in the human genome. Genom Hum Genet. 2006;7(1):29–59.
doi: 10.1146/annurev.genom.7.080505.115623
Beaulieu ME, Castillo F, Soucek L. Structural and biophysical insights into the function of the intrinsically disordered Myc oncoprotein. Cells. 2020;9(4):1038.
pubmed: 32331235
pmcid: 7226237
doi: 10.3390/cells9041038
Perini G, Diolaiti D, Porro A, Della VG. In vivo transcriptional regulation of N-Myc target genes is controlled by E-box methylation. Proc Natl Acad Sci USA. 2005;102(34):12117–22.
pubmed: 16093321
pmcid: 1184034
doi: 10.1073/pnas.0409097102
Daniel JM, Reynolds AB. The catenin p[Formula: see text] interacts with kaiso, a novel BTB/POZ domain zinc finger transcription factor. Mol Cell Biol. 1999;19(5):3614–23.
pubmed: 10207085
pmcid: 84161
doi: 10.1128/MCB.19.5.3614
Pierrea CC, Hercules SM, Yates C, Daniel JM. Dancing from bottoms up: roles of the POZ-ZF transcription factor Kaiso in cancer. Biochim Biophys Acta Rev Cancer. 2019;1871(1):64–74.
doi: 10.1016/j.bbcan.2018.10.005
Daniel JM, Spring CM, Crawford HC, Reynolds AB, Baig A. The p[Formula: see text]-binding partner Kaiso is a bi-modal DNA-binding protein that recognizes both a sequence-specific consensus and methylated CpG dinucleotides. Nucleic Acids Res. 2002;30(13):2911–9.
pubmed: 12087177
pmcid: 117053
doi: 10.1093/nar/gkf398
Raghav SK, Waszak SM, Krier I, Gubelmann C, Isakova A, Mikkelsen TS, et al. Integrative genomics identifies the corepressor SMRT as a gatekeeper of adipogenesis through the transcription factors C/EBPb and KAISO. Mol Cell. 2012;46(3):335–50.
pubmed: 22521691
doi: 10.1016/j.molcel.2012.03.017
Blattler A, Yao L, Wang Y, Ye Z, Jin VX, Farnham PJ. ZBTB33 binds unmethylated regions of the genome associated with actively expressed genes. Epigenet Chromatin. 2013;6(13):1–18.
Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi BZ, Cedar H. DNA methylation represses transcription in vivo. Nat Genet. 1999;22(2):203–6.
pubmed: 10369268
doi: 10.1038/9727
Wang G, Luo X, Wang J, Wan J, Xia S, Zhu H, et al. MeDReaders: a database for transcription factors that bind to methylated DNA. Nucleic Acids Res. 2018;46(D1):D146-51.
pubmed: 29145608
doi: 10.1093/nar/gkx1096
Xuan Lin QX, Sian S, An O, Thieffry D, Jha S, Benoukraf T. MethMotif: an integrative cell specific database of transcription factor binding motifs coupled with DNA methylation profiles. Nucleic Acids Res. 2019;47(D1):D145-54.
pubmed: 30380113
doi: 10.1093/nar/gky1005
Zuo Z, Roy B, Chang YK, Granas D, Stormo GD. Measuring quantitative effects of methylation on transcription factor-DNA binding affinity. Epigenet Chromatin. 2014;3(35):eaao1799.
Shi DQ, Ali I, Tang J, Yang WC. New insights into 5hmC DNA modification: generation, distribution and function. Front Genet. 2017;8:100.
pubmed: 28769976
pmcid: 5515870
doi: 10.3389/fgene.2017.00100
Sayeed SK, Zhao J, Sathyanarayana BK, Golla JP, Vinson C. C/EBPβ (CEBPB) protein binding to the C/EBP|CRE DNA 8-mer TTGC|GTCA is inhibited by 5hmC and enhanced by 5mC, 5fC, and 5caC in the CG dinucleotide. Biochim Biophys Acta. 2015;1849(6):583–9.
pubmed: 25779641
doi: 10.1016/j.bbagrm.2015.03.002
Jin SG, Kadam S, Pfeifer GP. Examination of the specificity of DNA methylation profiling techniques towards 5-methylcytosine and 5-hydroxymethylcytosine. Nucleic Acids Res. 2010;38(11): e125.
pubmed: 20371518
pmcid: 2887978
doi: 10.1093/nar/gkq223
Huang Y, Pastor WA, Shen Y, Tahiliani M, Liu DR, Rao A. The behaviour of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS ONE. 2010;5(1): e8888.
pubmed: 20126651
pmcid: 2811190
doi: 10.1371/journal.pone.0008888
Yu M, Hon GC, Szulwach KE, Song CX, Zhang L, Kim A, et al. Base-resolution analysis of 5-hydroxymethylcytosine in the mammalian genome. Cell. 2012;149(6):1368–80.
pubmed: 22608086
pmcid: 3589129
doi: 10.1016/j.cell.2012.04.027
Zhou X, Maricque B, Xie M, Li D, Sundaram V, Martin EA, et al. The human epigenome browser at Washington University. Nat Methods. 2011;8(12):989–90.
pubmed: 22127213
pmcid: 3552640
doi: 10.1038/nmeth.1772
Shen L, Shao N, Liu X, Nestler E. ngs.plot: quick mining and visualization of next-generation sequencing data by integrating genomic databases. BMC Genom. 2014;15(284):1–14.