Improved detection of methylation in ancient DNA.
Ancient DNA
Bisulfite treatment
Enzymatic methylation treatment
Methylation
Paleogenomics
Journal
Genome biology
ISSN: 1474-760X
Titre abrégé: Genome Biol
Pays: England
ID NLM: 100960660
Informations de publication
Date de publication:
10 Oct 2024
10 Oct 2024
Historique:
received:
20
12
2023
accepted:
26
09
2024
medline:
11
10
2024
pubmed:
11
10
2024
entrez:
10
10
2024
Statut:
epublish
Résumé
Reconstructing premortem DNA methylation levels in ancient DNA has led to breakthrough studies such as the prediction of anatomical features of the Denisovan. These studies rely on computationally inferring methylation levels from damage signals in naturally deaminated cytosines, which requires expensive high-coverage genomes. Here, we test two methods for direct methylation measurement developed for modern DNA based on either bisulfite or enzymatic methylation treatments. Bisulfite treatment shows the least reduction in DNA yields as well as the least biases during methylation conversion, demonstrating that this method can be successfully applied to ancient DNA.
Identifiants
pubmed: 39390557
doi: 10.1186/s13059-024-03405-5
pii: 10.1186/s13059-024-03405-5
doi:
Substances chimiques
DNA, Ancient
0
Sulfites
0
hydrogen sulfite
OJ9787WBLU
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
261Informations de copyright
© 2024. The Author(s).
Références
Boulias K, Greer EL. Means, mechanisms and consequences of adenine methylation in DNA. Nat Rev Genet. 2022;23:411–28.
pmcid: 9354840
doi: 10.1038/s41576-022-00456-x
pubmed: 35256817
Bird AP. CpG-rich islands and the function of DNA methylation. Nature. 1986;321:209–13.
doi: 10.1038/321209a0
pubmed: 2423876
Holliday R, Pugh JE. DNA modification mechanisms and gene activity during development. Science. 1975;187:226–32.
doi: 10.1126/science.187.4173.226
pubmed: 1111098
Horvath S. DNA methylation age of human tissues and cell types. Genome Biol. 2013;14:R115.
pmcid: 4015143
doi: 10.1186/gb-2013-14-10-r115
pubmed: 24138928
Shiek SS, Mani MS, Kabekkodu SP, Dsouza HS. Health repercussions of environmental exposure to lead: methylation perspective. Toxicology. 2021;461:152927.
doi: 10.1016/j.tox.2021.152927
pubmed: 34492314
Nishiyama A, Nakanishi M. Navigating the DNA methylation landscape of cancer. Trends Genet. 2021;37:1012–27.
doi: 10.1016/j.tig.2021.05.002
pubmed: 34120771
Grunau C, Clark SJ, Rosenthal A. Bisulfite genomic sequencing: systematic investigation of critical experimental parameters. Nucleic Acids Res. 2001;29:E65–75.
pmcid: 55789
doi: 10.1093/nar/29.13.e65
pubmed: 11433041
Vaisvila R, Ponnaluri VKC, Sun Z, Langhorst BW, Saleh L, Guan S, et al. Enzymatic methyl sequencing detects DNA methylation at single-base resolution from picograms of DNA. Genome Res. 2021. https://doi.org/10.1101/gr.266551.120 .
doi: 10.1101/gr.266551.120
pmcid: 8256858
pubmed: 34140313
Pääbo S. Ancient DNA: extraction, characterization, molecular cloning, and enzymatic amplification. Proc Natl Acad Sci U S A. 1989;86:1939–43.
pmcid: 286820
doi: 10.1073/pnas.86.6.1939
pubmed: 2928314
Noonan JP, Hofreiter M, Smith D, Priest JR, Rohland N, Rabeder G, et al. Genomic sequencing of Pleistocene cave bears. Science. 2005;309:597–9.
doi: 10.1126/science.1113485
pubmed: 15933159
Llamas B, Holland ML, Chen K, Cropley JE, Cooper A, Suter CM. High-resolution analysis of cytosine methylation in ancient DNA. PLoS ONE. 2012;7:e30226.
pmcid: 3261890
doi: 10.1371/journal.pone.0030226
pubmed: 22276161
Smith RWA, Monroe C, Bolnick DA. Detection of Cytosine methylation in ancient DNA from five Native American populations using bisulfite sequencing. PLoS ONE. 2015;10:e0125344.
pmcid: 4445908
doi: 10.1371/journal.pone.0125344
pubmed: 26016479
Schmidt M, Maixner F, Hotz G, Pap I, Szikossy I, Pálfi G, et al. DNA methylation profiling in mummified human remains from the eighteenth-century. Sci Rep. 2021;11:15493.
pmcid: 8322318
doi: 10.1038/s41598-021-95021-7
pubmed: 34326450
Briggs AW, Stenzel U, Johnson PLF, Green RE, Kelso J, Prüfer K, et al. Patterns of damage in genomic DNA sequences from a Neandertal. Proc Natl Acad Sci U S A. 2007;104:14616–21.
pmcid: 1976210
doi: 10.1073/pnas.0704665104
pubmed: 17715061
Sawyer S, Krause J, Guschanski K, Savolainen V, Pääbo S. Temporal patterns of nucleotide misincorporations and DNA fragmentation in ancient DNA. PLoS ONE. 2012;7:e34131.
pmcid: 3316601
doi: 10.1371/journal.pone.0034131
pubmed: 22479540
Briggs AW, Stenzel U, Meyer M, Krause J, Kircher M, Pääbo S. Removal of deaminated cytosines and detection of in vivo methylation in ancient DNA. Nucleic Acids Res. 2010;38:e87.
doi: 10.1093/nar/gkp1163
pubmed: 20028723
Gokhman D, Lavi E, Prüfer K, Fraga MF, Riancho JA, Kelso J, et al. Reconstructing the DNA methylation maps of the Neandertal and the Denisovan. Science. 2014;344:523–7.
doi: 10.1126/science.1250368
pubmed: 24786081
Hanghøj K, Renaud G, Albrechtsen A, Orlando L. DamMet: ancient methylome mapping accounting for errors, true variants, and post-mortem DNA damage. Gigascience. 2019;8. Available from: https://doi.org/10.1093/gigascience/giz025 .
Gokhman D, Mishol N, de Manuel M, de Juan D, Shuqrun J, Meshorer E, et al. Reconstructing Denisovan anatomy using DNA methylation maps. Cell. 2020;180:601.
doi: 10.1016/j.cell.2020.01.020
pubmed: 32032517
Gokhman D, Nissim-Rafinia M, Agranat-Tamir L, Housman G, García-Pérez R, Lizano E, et al. Differential DNA methylation of vocal and facial anatomy genes in modern humans. Nat Commun. 2020;11:1189.
pmcid: 7055320
doi: 10.1038/s41467-020-15020-6
pubmed: 32132541
Gokhman D, Malul A, Carmel L. Inferring past environments from ancient epigenomes. Mol Biol Evol. 2017;34:2429–38.
pmcid: 5850778
doi: 10.1093/molbev/msx211
pubmed: 28957511
Liu X, Seguin-Orlando A, Chauvey L, Tressières G, Schiavinato S, Tonasso-Calvière L, et al. DNA methylation-based profiling of horse archaeological remains for age-at-death and castration. iScience. 2023;26:106144.
pmcid: 9950528
doi: 10.1016/j.isci.2023.106144
pubmed: 36843848
Niiranen L, Leciej D, Edlund H, Bernhardsson C, Fraser M, Quinto FS, et al. Epigenomic modifications in modern and ancient genomes. Genes. 2022;13. Available from: https://doi.org/10.3390/genes13020178 .
Barouch A, Mathov Y, Meshorer E, Yakir B, Carmel L. Reconstructing DNA methylation maps of ancient populations. Nucleic Acids Res. 2024;52(4):1602–12.
Website. Available from: David Reich, Swapan Mallick. 2024. “Allen Ancient Genome Diversity Project/John Templeton Ancient DNA Atlas.” Https://reich.hms.harvard.edu/ancient-Genome-Diversity-Project .
Mathieson I, Alpaslan-Roodenberg S, Posth C, Szécsényi-Nagy A, Rohland N, Mallick S, et al. The genomic history of southeastern Europe. Nature. 2018;555:197–203.
pmcid: 6091220
doi: 10.1038/nature25778
pubmed: 29466330
Lazaretov IP, Polyakov AV. Chronology and periodization of the Southern Siberia bronze age sites. In: Shamshin AB, editor. Etnokul’turnye processy v Verhnem Priob’e I sopredelnykh regionakh v konce epokhi bronzy. Barnaul: Koncept; 2008. p. 33–55.
Ráduly E. A váci Fehérek templom kriptafeltárása. Műtárgyvédelem. 1997;26:21–7.
Zomborka M. Excavation of the crypt of the Dominican Church. Vác Magyar Múzeumok. 1996;2:3–7.
Fletcher HA, Donoghue HD, Holton J, Pap I, Spigelman M. Widespread occurrence of Mycobacterium tuberculosis DNA from 18th-19th century Hungarians. Am J Phys Anthropol. 2003;120:144–52.
doi: 10.1002/ajpa.10114
pubmed: 12541332
Kay GL, Sergeant MJ, Zhou Z, Chan JZ-M, Millard A, Quick J, et al. Eighteenth-century genomes show that mixed infections were common at time of peak tuberculosis in Europe. Nat Commun. 2015;6:6717.
doi: 10.1038/ncomms7717
pubmed: 25848958
Pap I, Józsa L, Repa I, Bajzik G, Lakhani SR, Donoghue HD, Spigelman M. 18–19th century tuberculosis in naturally mummified individuals (Vác, Hungary). In: Pálfi Gy, Dutour O, Deák J, Hutás I, editors. Tuberculosis: past and present. Budapest:Golden Book Publisher; 1999. p. 421–8.
Pap I, Susa É, Józsa L. Mummies from the 18-19th century Dominican Church of Vác, Hungary. Acta Biol Hung. 1997;42:107–12.
Pap I, Szikossy I, Kustár Á, Bajzáth J. Behind the curtain: secrets, fates, MUMMIES – temporary exhibition of the Hungarian Natural History Museum, Budapest. In: Wieczorek A, Rosendahl W, Wiegand H, editors. Mumien und Museen Kolloquium zur Ausstellung MUMIEN Der Traum vom ewigen Leben REMmagazin Sonderveröffentlichung 2, Proceedings of the Symposium Mumien und Museen. Mannheim:Reiss-Engelhorn-Museum; 2009. p. 57–60.
Ildikó S. Sebészeti beavatkozások nyomai a XVIII. századi váci múmiákon [phd]. szte; 2020. Available from: http://doktori.bibl.u-szeged.hu/10693/ . Cited 2023 Oct 27.
Szikossy I, Kustár Á, Guba ZS, Kristóf LA, Pap I. Mummies from Hungary. Naturally mummified corpses from the Dominican Church in Vác, Hungary. In: Wieczorek A, Rosendahl W, editors. Mummies of the World American Exhibitions Inc, Reiss-Engelhorn-Museum, Mannheim. Munich:Prestel Verlag; 2010. p.160–171.
Szikossy I, Kristóf LA, Pap I. Mummies found in the Dominican Church of Vác, Hungary. In: Wieczorek A, Rosendahl W, editors. Mummies of the World American Exhibitions Inc, Reiss-Engelhorn-Museum, Mannheim. Munich:Prestel Verlag; 2010. p. 355–356.
Donoghue HD, Pap I, Szikossy I, Spigelman M. Detection and characterization of Mycobacterium tuberculosis DNA in 18th century Hungarians with pulmonary and extra-pulmonary tuberculosis. In: Gill-Frerking H, Rosendahl W, Zink A, Piombino-Mascasli D, editors. Yearbook of mummy studies. Munich:Verlag Dr. Friedrich Pfeil; 2011. p. 51–56.
Donoghue HD, Pap I, Szikossy I, Spigelman M. The Vác Mummy Project: investigation of 265 eighteenth-century mummified remains from the TB pandemic era. In: Shin DH, Bianucci R, editors. The Handbook of Mummy Studies: New Frontiers in Scientific and Cultural Perspectives. Singapore: Springer Singapore; 2021. p. 777–805.
doi: 10.1007/978-981-15-3354-9_21
Antonio ML, Weiß CL, Gao Z, Sawyer S, Oberreiter V, Moots HM, et al. Stable population structure in Europe since the Iron Age, despite high mobility. bioRxiv. 2022. Available from: https://doi.org/10.1101/2022.05.15.491973 .
Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. 2010;2010:db.prot5448.
doi: 10.1101/pdb.prot5448
Kapp JD, Green RE, Shapiro B. A fast and efficient single-stranded genomic library preparation method optimized for ancient DNA. J Hered. 2021;112:241–9.
pmcid: 8141684
doi: 10.1093/jhered/esab012
pubmed: 33768239
Gansauge M-T, Gerber T, Glocke I, Korlevic P, Lippik L, Nagel S, et al. Single-stranded DNA library preparation from highly degraded DNA using T4 DNA ligase. Nucleic Acids Res. 2017;45: e79.
pmcid: 5449542
pubmed: 28119419
Gansauge M-T, Meyer M. Single-stranded DNA library preparation for the sequencing of ancient or damaged DNA. Nat Protoc. 2013;8:737–48.
doi: 10.1038/nprot.2013.038
pubmed: 23493070
Glocke I, Meyer M. Extending the spectrum of DNA sequences retrieved from ancient bones and teeth. Genome Res. 2017;27:1230–7.
pmcid: 5495074
doi: 10.1101/gr.219675.116
pubmed: 28408382
Bokelmann L, Glocke I, Meyer M. Reconstructing double-stranded DNA fragments on a single-molecule level reveals patterns of degradation in ancient samples. Genome Res. 2020;30:1449–57.
pmcid: 7605269
doi: 10.1101/gr.263863.120
pubmed: 32963029
Kircher M, Sawyer S, Meyer M. Double indexing overcomes inaccuracies in multiplex sequencing on the Illumina platform. Nucleic Acids Res. 2012;40:e3.
doi: 10.1093/nar/gkr771
pubmed: 22021376
Meyer M, Kircher M, Gansauge M-T, Li H, Racimo F, Mallick S, et al. A high-coverage genome sequence from an archaic Denisovan individual. Science. 2012;338:222–6.
pmcid: 3617501
doi: 10.1126/science.1224344
pubmed: 22936568
Lee J-H, Park S-J, Nakai K. Differential landscape of non-CpG methylation in embryonic stem cells and neurons caused by DNMT3s. Sci Rep. 2017;7:11295.
pmcid: 5595995
doi: 10.1038/s41598-017-11800-1
pubmed: 28900200
Ziller MJ, Gu H, Müller F, Donaghey J, Tsai LT-Y, Kohlbacher O, et al. Charting a dynamic DNA methylation landscape of the human genome. Nature. 2013;500:477–81.
pmcid: 3821869
doi: 10.1038/nature12433
pubmed: 23925113
Loyfer N, Magenheim J, Peretz A, Cann G, Bredno J, Klochendler A, et al. A DNA methylation atlas of normal human cell types. Nature. 2023;613:355–64.
pmcid: 9811898
doi: 10.1038/s41586-022-05580-6
pubmed: 36599988
Rohland N, Harney E, Mallick S, Nordenfelt S, Reich D. Partial uracil–DNA–glycosylase treatment for screening of ancient DNA. Philos Trans R Soc Lond B Biol Sci. 2015;370:20130624.
pmcid: 4275898
doi: 10.1098/rstb.2013.0624
pubmed: 25487342
Ziller MJ, Hansen KD, Meissner A, Aryee MJ. Coverage recommendations for methylation analysis by whole-genome bisulfite sequencing. Nat Methods. 2015;12:230–2 1 p following 232.
doi: 10.1038/nmeth.3152
pubmed: 25362363
Olova N, Krueger F, Andrews S, Oxley D, Berrens RV, Branco MR, et al. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data. Genome Biol. 2018;19:33.
pmcid: 5856372
doi: 10.1186/s13059-018-1408-2
pubmed: 29544553
Feng S, Zhong Z, Wang M, Jacobsen SE. Efficient and accurate determination of genome-wide DNA methylation patterns in Arabidopsis thaliana with enzymatic methyl sequencing. Epigenetics Chromatin. 2020;13:42.
pmcid: 7542392
doi: 10.1186/s13072-020-00361-9
pubmed: 33028374
Morrison J, Koeman JM, Johnson BK, Foy KK, Beddows I, Zhou W, et al. Evaluation of whole-genome DNA methylation sequencing library preparation protocols. Epigenetics Chromatin. 2021;14:28.
pmcid: 8214260
doi: 10.1186/s13072-021-00401-y
pubmed: 34147133
Pinhasi R, Fernandes DM, Sirak K, Cheronet O. Isolating the human cochlea to generate bone powder for ancient DNA analysis. Nat Protoc. 2019;14:1194–205.
doi: 10.1038/s41596-019-0137-7
pubmed: 30842617
Dabney J, Knapp M, Glocke I, Gansauge M-T, Weihmann A, Nickel B, et al. Complete mitochondrial genome sequence of a Middle Pleistocene cave bear reconstructed from ultrashort DNA fragments. Proc Natl Acad Sci U S A. 2013;110:15758–63.
pmcid: 3785785
doi: 10.1073/pnas.1314445110
pubmed: 24019490
Rohland N, Mallick S, Mah M, Maier R, Patterson N, Reich D. Three assays for in-solution enrichment of ancient human DNA at more than a million SNPs. Genome Res. 2022;32:2068–78.
pmcid: 9808625
doi: 10.1101/gr.276728.122
pubmed: 36517229
Martin M. Cutadapt removes adapter sequences from high-throughput sequencing reads. EMBnet.journal. 2011;17:10–2.
doi: 10.14806/ej.17.1.200
Krueger F, Andrews SR. Bismark: a flexible aligner and methylation caller for Bisulfite-Seq applications. Bioinformatics. 2011;27:1571–2.
pmcid: 3102221
doi: 10.1093/bioinformatics/btr167
pubmed: 21493656
Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. Twelve years of SAMtools and BCFtools. Gigascience. 2021;10. https://doi.org/10.1093/gigascience/giab008 .
Website. Available from: R. Core Team. An introduction to R. 2015. https://www.R-project.org .
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.
pmcid: 2705234
doi: 10.1093/bioinformatics/btp324
pubmed: 19451168
Quinlan AR, Hall IM. BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics. 2010;26:841–2.
pmcid: 2832824
doi: 10.1093/bioinformatics/btq033
pubmed: 20110278
Akalin A, Kormaksson M, Li S, Garrett-Bakelman FE, Figueroa ME, Melnick A, et al. methylKit: a comprehensive R package for the analysis of genome-wide DNA methylation profiles. Genome Biol. 2012;13:R87.
pmcid: 3491415
doi: 10.1186/gb-2012-13-10-r87
pubmed: 23034086
Sawyer S, Gelabert P, Yakir B, Lizcano AL, Sperduti A, Bondioli, et al. Improved detection of methylation in ancient DNA. Dataset. European nucleotide archive. https://www.ebi.ac.uk/ena/browser/view/PRJEB71420 .