The formation of nicotine heterosis is mainly achieved by enhancing the nicotine transport capacity in hybrids.
Nicotiana tabacum L.
Heterosis
Nicotine
Transcriptomics
Transport
Journal
BMC plant biology
ISSN: 1471-2229
Titre abrégé: BMC Plant Biol
Pays: England
ID NLM: 100967807
Informations de publication
Date de publication:
15 Oct 2024
15 Oct 2024
Historique:
received:
12
07
2024
accepted:
07
10
2024
medline:
15
10
2024
pubmed:
15
10
2024
entrez:
14
10
2024
Statut:
epublish
Résumé
Nicotine exhibits obvious heterosis, which can be used to create Nicotiana tabacum L. (tobacco) varieties with varying nicotine content. However, the reasons for the formation of nicotine heterosis and its relationship to nicotine transport and accumulation remain unknown. This study conducted a comprehensive analysis of six tobacco hybrids with varying heterosis levels and their parent materials from various aspects, such as phenotype, physiology, and transcriptomics. The results showed that the direct path coefficient of transport heterosis to nicotine heterosis was highest in hybrids, at 0.98, and a highly significant positive correlation between the two. The plant height, thick stalk circumference, large flow of tissue fluid in the stalk, and high nicotine concentration of tobacco were the underlying factors that led to the strong nicotine transport capacity of hybrids. The formation of nicotine transport heterosis in hybrids was mainly influenced by non-additive gene effects (accounting for 89.93%), with over-dominant effects playing a dominant role (accounting for 58.79%). Among non-additive expression DEGs, nicotine transporter related multi antimicrobial extrusion protein, drug/metabolite transporter, ABC family transporter, and glutathione S-transferase were significantly upregulated in hybrid strains. The RT-qPCR results indicated that these genes related nicotine transport also exhibited heterosis at the expression level. Our results revealed that the formation of nicotine heterosis is mainly achieved by enhancing the nicotine transport capacity in hybrids. The results are not only beneficial for promoting the theoretical study of nicotine heterosis in tobacco and the breeding and utilization of hybrids, but are also of great significance for guiding nicotine production and promoting its multipurpose utilization.
Identifiants
pubmed: 39402468
doi: 10.1186/s12870-024-05670-9
pii: 10.1186/s12870-024-05670-9
doi:
Substances chimiques
Nicotine
6M3C89ZY6R
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
962Subventions
Organisme : The Guizhou Provincial Fund Project
ID : ZK [2023] 116
Organisme : National Natural Science Foundation of China
ID : No. 32060510
Organisme : Major Projects of Guizhou Tobacco Company
ID : 2022XM02
Informations de copyright
© 2024. The Author(s).
Références
Timberlake WE, Heterosis. Brenner’s Encycl Genet Second Ed. 2013;2:451–3.
Hochholdinger F, Baldauf JA. Heterosis in plants. Curr Biol. 2018;28:R1089–92. https://doi.org/10.1016/j.cub.2018.06.041 .
doi: 10.1016/j.cub.2018.06.041
pubmed: 30253145
Li D, Huang Z, Song S, Xin Y, Mao D, Lv Q, et al. Integrated analysis of phenome, genome, and transcriptome of hybrid rice uncovered multiple heterosis-related loci for yield increase. Proc Natl Acad Sci U S A. 2016;113:E6026–35.
doi: 10.1073/pnas.1610115113
pubmed: 27663737
pmcid: 5068331
Shull G. The composition of a field of maize. J Hered. 1908;1:296–301. https://doi.org/10.1093/jhered/os-4.1.296 .
doi: 10.1093/jhered/os-4.1.296
Bruce AB. The mendelian theory of heredity and the augmentation of vigor. Sci (80-). 1910;32:627–8.
doi: 10.1126/science.32.827.627.b
East EM, Heterosis. Genetics. 1936;21:375–97. https://doi.org/10.1093/genetics/21.4.375 .
doi: 10.1093/genetics/21.4.375
pubmed: 17246801
pmcid: 1208682
Jinks JL, Jones RM. Estimation of the components of Heterosis. Genetics. 1958;43:223–34.
doi: 10.1093/genetics/43.2.223
pubmed: 17247752
pmcid: 1209876
Minvielle F. Dominance is not necessary for heterosis: a two-locus model. Genet Res. 1987;49:245–7.
doi: 10.1017/S0016672300027142
Shao L, Xing F, Xu C, Zhang Q, Che J, Wang X, et al. Patterns of genome-wide allele-specific expression in hybrid rice and the implications on the genetic basis of heterosis. Proc Natl Acad Sci U S A. 2019;116:5653–8.
doi: 10.1073/pnas.1820513116
pubmed: 30833384
pmcid: 6431163
Baldauf JA, Liu M, Vedder L, Yu P, Piepho HP, Schoof H, et al. Single-parent expression complementation contributes to phenotypic heterosis in maize hybrids. Plant Physiol. 2022;189:1625–38.
doi: 10.1093/plphys/kiac180
pubmed: 35522211
pmcid: 9237695
Tian M, Nie Q, Li Z, Zhang J, Liu Y, Long Y, et al. Transcriptomic analysis reveals overdominance playing a critical role in nicotine heterosis in Nicotiana tabacum L. BMC Plant Biol. 2018;18:1–32.
doi: 10.1186/s12870-018-1257-x
Yang T. Tobacco breeding. Beijing: China Agriculture; 2003.
Chen J, Liu J, Long H. Study on mineral nutrition and main chemical composition content characteristics of Chinese tobacco leaf. Chin Tob. 2004;10:20–7.
Yu J. Cigarette technology. China Agricultural; 2003.
Baldwin IT. Jasmonate-induced responses are costly but benefit plants under attack in native populations. Proc Natl Acad Sci U S A. 1998;95:8113–8.
doi: 10.1073/pnas.95.14.8113
pubmed: 9653149
pmcid: 20938
Mukhopadhyay I, Chowdhuri DK, Bajpayee M, Dhawan A. Evaluation of in vivo genotoxicity of cypermethrin in Drosophila melanogaster using the alkaline Comet assay. Mutagenesis. 2004;19:85–90.
doi: 10.1093/mutage/geh007
pubmed: 14981154
Dawson RF. Nicotine synthesis in excised Tobacco roots. Am J Bot. 1942;29:813–5.
doi: 10.1002/j.1537-2197.1942.tb10284.x
Hashimoto T, Yamada Y. New genes in alkaloid metabolism and transport. Curr Opin Biotechnol. 2003;14:163–8.
doi: 10.1016/S0958-1669(03)00027-2
pubmed: 12732317
Morita M, Shitan N, Sawada K, Van Montagu MCE, Inzé D, Rischer H, et al. Vacuolar transport of nicotine is mediated by a multidrug and toxic compound extrusion (MATE) transporter in Nicotiana tabacum. Proc Natl Acad Sci U S A. 2009;106:2447–52.
doi: 10.1073/pnas.0812512106
pubmed: 19168636
pmcid: 2650162
Shitan N, Minami S, Morita M, Hayashida M, Ito S, Takanashi K, et al. Involvement of the leaf-specific multidrug and toxic compound extrusion (mate) transporter Nt-JAT2 in vacuolar sequestration of nicotine in nicotiana tabacum. PLoS ONE. 2014;9:1–10.
doi: 10.1371/journal.pone.0108789
Mo Z, Pu Y, Zhou J, Tian Z, Teng J, Chen Q, et al. Effect of the over-dominant expression of proteins on nicotine heterosis via proteomic analysis. Sci Rep. 2021;11:1–12. https://doi.org/10.1038/s41598-021-00614-x .
doi: 10.1038/s41598-021-00614-x
Mo Z. Differential proteomic analysis of nicotinic heterosis in tobacco. Guizhou University; 2020.
Shoji T, Inai K, Yazaki Y, Sato Y, Takase H, Shitan N, et al. Multidrug and toxic compound extrusion-type transporters implicated in vacuolar sequestration of nicotine in tobacco roots. Plant Physiol. 2009;149:708–18.
doi: 10.1104/pp.108.132811
pubmed: 19098091
pmcid: 2633862
Kim D, Langmead B. Salzberg1 SL. HISAT: a fast spliced aligner with low memory requirements Daehwan HHS Public Access. Nat Methods. 2015;12:357–60.
doi: 10.1038/nmeth.3317
pubmed: 25751142
pmcid: 4655817
Roberts A, Trapnell C, Donaghey J, Rinn JL, Pachter L. Improving RNA-Seq expression estimates by correcting for fragment bias. Genome Biol. 2011;12:114.
doi: 10.1186/gb-2011-12-3-r22
Trapnell C, Williams Ba, Pertea G, Mortazavi A, Kwan G, van Baren MJ, et al. Transcript assembly and abundance estimation from RNA-Seq reveals thousands of new transcripts and switching among isoforms. Nat Biotechnol. 2011;28:511–5. https://doi.org/10.1038/nbt.1621.Transcript .
doi: 10.1038/nbt.1621.Transcript
Anders S, Huber W. Differential expression of RNA-Seq data at the gene level–the DESeq package. Biotechnol Bull. 2012;1–28. https://doi.org/10.13560/j.cnki.biotech.bull.1985.2018-0814 .
Conesa A, Götz S, García-Gómez JM, Terol J, Talón M, Robles M. Blast2GO: a universal tool for annotation, visualization and analysis in functional genomics research. Bioinformatics. 2005;21:3674–6.
doi: 10.1093/bioinformatics/bti610
pubmed: 16081474
Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2-∆∆CT method. Methods. 2001;25:402–8.
doi: 10.1006/meth.2001.1262
pubmed: 11846609
Mo Z, Luo W, Pi K, Duan L, Wang P, Ke Y, et al. Comparative transcriptome analysis between inbred lines and hybrids provides molecular insights into K + content heterosis of tobacco (Nicotiana tabacum L). Front Plant Sci. 2022;13:1–14.
doi: 10.3389/fpls.2022.940787
Wang G. Studies on tobacco nicotine trait of heterosis and related gene differential expression analysis. 2015;:1–76.
Wang G. Studies on tobacco nicotine trait of heterosis and related gene differential expression analysis. Guizhou University; 2015.
Xiao JC, Wu ZH, Xu KZ, Ling F, Lou, Cui JJ, Li X. Changes of root bleeding sap weight and its correlation with flag leaf net photosynthetic rate in rice cultivars released 47 years in Jilin Province of China. Plant Physiol J. 2012;48:499–504.
Li H, Sun Y, Qu J, Wei C, Sun G, Zhao Y, et al. Influence of nitrogen levels on morphological and physiological characteristics of root system in japonica rice in Northeast China. Chin J Rice Sci. 2012;26:723–30.
Shen F, Wei Z, Huang Q, Tang X, Yin Y, Liao M, et al. Effects of the root-cutting and girding on the circulation and accumulation of the potassium, calcium and magnesium in tobacco. Chin Agric Sci Bull. 2011;27:127–31.
Zhang X. Study on the differences and mechanisms of potassium efficiency in tobacco with different genotypes. 2003.
Li F, Xiao F, Peng G. Study on the potassium content of exudation of tobacco sap. Tob Sci Technol. 2000;000:38–41.
Bai D, Deng X, Huang M. Water transportation and regulation in plants. Acta Bot Boreali-Occidentalia Sin. 2003;:1637–73.
Cruiziat P, Cochard H, Améglio T. Soil detritivore macro-invertebrate assemblages throughout a managed beech rotation. Ann Sci. 2007;64:219–28.
doi: 10.1051/forest:2006106
Liu X. Studies on the models of hydraulic architecture and mechanism of drought tolerance in trees species. 2003;:1–71.
Li J, Zhai H. Hydraulic architecture and drught resistance of woody plants. Chin J Appl Ecol. 2020;11:301–5.
Dean M, Moitra K, Allikmets R. The human ATP-binding cassette (ABC) transporter superfamily. Hum Mutat. 2022;43:1162–82.
doi: 10.1002/humu.24418
pubmed: 35642569
pmcid: 9357071
Higgins CF. ABC transporters: from microorganisms to mHiggins, C F. 1992. „ABC transporters: from microorganisms to man. Annual review of cell biology 8: 67–113. https://doi.org/10.1146/annurev.cb.08.110192.000435.an . Annu Rev Cell Biol. 1992;8:67–113.
Xie X. Identification and functional characterization of nicotiana tabacum ABC transporters involved in the transport of secondary metabolites. 2014.
Zhao J, Dixon RA. The ins and outs of flavonoid transport. Trends Plant Sci. 2010;15:72–80.
doi: 10.1016/j.tplants.2009.11.006
pubmed: 20006535
Mueller LA, Goodman CD, Silady RA, Walbot V. Required for anthocyanin sequestration, is a flavonoid-binding protein 1. Society. 2000;123:1561–70.
Petrussa E, Braidot E, Zancani M, Peresson C, Bertolini A, Patui S, et al. Plant flavonoids-biosynthesis, transport and involvement in stress responses. Int J Mol Sci. 2013;14:14950–73.
doi: 10.3390/ijms140714950
pubmed: 23867610
pmcid: 3742282