Astragaloside IV reduces mutant Ataxin-3 levels and supports mitochondrial function in Spinocerebellar Ataxia Type 3.


Journal

Scientific reports
ISSN: 2045-2322
Titre abrégé: Sci Rep
Pays: England
ID NLM: 101563288

Informations de publication

Date de publication:
29 10 2024
Historique:
received: 20 03 2024
accepted: 24 10 2024
medline: 30 10 2024
pubmed: 30 10 2024
entrez: 30 10 2024
Statut: epublish

Résumé

This study investigated the therapeutic effects of astragaloside IV (AST) on spinocerebellar ataxia type 3 (SCA3), also known as Machado-Joseph disease (MJD), a neurodegenerative disorder. Human neuroblastoma SK-N-SH cells expressing mutant ataxin-3 protein with 78 CAG repeats (MJD78) were employed as an in vitro model. Protein expression analysis demonstrated that AST treatment reduced mutant ataxin-3 protein expression and aggregation by enhancing the autophagic process in MJD78 cells. Elevated oxidative stress levels in MJD78 cells were significantly reduced following AST treatment, which also enhanced antioxidant capacity, as evidenced by flow cytometry and antioxidant enzyme activity assays. Furthermore, AST treatment ameliorated mitochondrial dysfunction in MJD78 cells, including improvements in mitochondrial membrane potential, respiration, and mitochondrial dynamics. In conclusion, AST administration increased antioxidant capacity, reduced both cellular and mitochondrial oxidative stress, and improved mitochondrial quality control processes through fusion, fission, and autophagy. These mechanisms collectively reduced intracellular mutant ataxin-3 protein aggregation, thereby achieving therapeutic efficacy in the SCA3 model.

Identifiants

pubmed: 39472629
doi: 10.1038/s41598-024-77763-2
pii: 10.1038/s41598-024-77763-2
doi:

Substances chimiques

Ataxin-3 EC 3.4.19.12
Saponins 0
Triterpenes 0
astragaloside A 3A592W8XKE
ATXN3 protein, human EC 3.4.19.12
Antioxidants 0
Repressor Proteins 0

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

25979

Subventions

Organisme : Ministry of Science and Technology in Taiwan
ID : MOST 109- 2314-B-371 -008 -MY3
Organisme : Changhua Christian Hospital
ID : 110- CCH-MST-168
Organisme : National Science and Technology Council
ID : NSTC 112-2314-B-371 -007 -MY3

Informations de copyright

© 2024. The Author(s).

Références

Li, X., Liu, H., Fischhaber, P. L. & Tang, T. S. <ArticleTitle Language=“En”>Toward therapeutic targets for SCA3: insight into the role of Machado–Joseph disease protein ataxin-3 in misfolded proteins clearance. Prog. Neurobiol. 132, 34–58 (2015).
pubmed: 26123252 doi: 10.1016/j.pneurobio.2015.06.004
Ikeda, H. et al. Expanded polyglutamine in the Machado–Joseph disease protein induces cell death in vitro and in vivo. Nat. Genet. 13, 196–202 (1996).
pubmed: 8640226 doi: 10.1038/ng0696-196
Lee, J. H. et al. n-Butylidenephthalide modulates autophagy to ameliorate neuropathological progress of spinocerebellar ataxia type 3 through mTOR pathway. Int. J. Mol. Sci. 22, 6339 (2021).
pubmed: 34199295 pmcid: 8231882 doi: 10.3390/ijms22126339
Paulino, R. & Nóbrega, C. Autophagy in Spinocerebellar Ataxia Type 3: From Pathogenesis to Therapeutics. Int. J. Mol. Sci. 24, 7405 (2023).
pubmed: 37108570 pmcid: 10138583 doi: 10.3390/ijms24087405
de Assis, A. M. et al. Peripheral oxidative stress biomarkers in spinocerebellar ataxia type 3/Machado–Joseph disease. Front. Neurol. 8, 485 (2017).
pubmed: 28979235 pmcid: 5611390 doi: 10.3389/fneur.2017.00485
Wu, Y. L. et al. Treatment with caffeic acid and resveratrol alleviates oxidative stress induced neurotoxicity in cell and drosophila models of spinocerebellar ataxia type3. Sci. Rep. 7, 11641 (2017).
pubmed: 28912527 pmcid: 5599504 doi: 10.1038/s41598-017-11839-0
Harmuth, T. et al. Mitochondrial dysfunction in spinocerebellar ataxia type 3 is linked to VDAC1 deubiquitination. Int. J. Mol. Sci. 23, 5933 (2022).
pubmed: 35682609 pmcid: 9180688 doi: 10.3390/ijms23115933
Nan, Y. et al. Protective role of vitamin B6 against mitochondria damage in Drosophila models of SCA3. Neurochem. Int. 144, 104979 (2021).
pubmed: 33535071 doi: 10.1016/j.neuint.2021.104979
Vasconcelos-Ferreira, A. et al. The autophagy‐enhancing drug carbamazepine improves neuropathology and motor impairment in mouse models of Machado–Joseph disease. Neuropathol. Appl. Neurobiol. 48, e12763 (2022).
pubmed: 34432315 doi: 10.1111/nan.12763
Sittler, A. et al. Deregulation of autophagy in postmortem brains of Machado-Joseph disease patients. Neuropathology. 38, 113–124 (2018).
pubmed: 29218765 doi: 10.1111/neup.12433
McLoughlin, H. S., Moore, L. R. & Paulson, H. L. Pathogenesis of SCA3 and implications for other polyglutamine diseases. Neurobiol. Dis. 134, 104635 (2020).
pubmed: 31669734 doi: 10.1016/j.nbd.2019.104635
Gandhi, S. & Abramov, A. Y. Mechanism of oxidative stress in neurodegeneration. Oxidative Med. Cell. Longev. 2012, 428010 (2012).
Singh, A., Kukreti, R., Saso, L. & Kukreti, S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 24, 1583 (2019).
pubmed: 31013638 pmcid: 6514564 doi: 10.3390/molecules24081583
Pardillo-Díaz, R., Pérez-García, P., Castro, C., Nunez-Abades, P. & Carrascal, L. Oxidative stress as a potential mechanism underlying membrane hyperexcitability in neurodegenerative diseases. Antioxidants. 11, 1511 (2022).
pubmed: 36009230 pmcid: 9405356 doi: 10.3390/antiox11081511
Aguilar, T. A. F., Navarro, B. C. H. & Pérez, J. A. M. Endogenous antioxidants: a review of their role in oxidative stress. A master regulator of oxidative stress-the transcription factor nrf2, 3–20 (2016).
Chen, C. M. et al. Shaoyao Gancao Tang (SG-Tang), a formulated Chinese medicine, reduces aggregation and exerts neuroprotection in spinocerebellar ataxia type 17 (SCA17) cell and mouse models. Aging (Albany NY). 11, 986 (2019).
pubmed: 30760647 doi: 10.18632/aging.101804
Mattson, M. P., Gleichmann, M. & Cheng, A. Mitochondria in neuroplasticity and neurological disorders. Neuron. 60, 748–766 (2008).
pubmed: 19081372 pmcid: 2692277 doi: 10.1016/j.neuron.2008.10.010
Ulasov, A. V., Rosenkranz, A. A., Georgiev, G. P. & Sobolev, A. S. Nrf2/Keap1/ARE signaling: Towards specific regulation. Life Sci. 291, 120111 (2022).
pubmed: 34732330 doi: 10.1016/j.lfs.2021.120111
Wang, D. K. et al. Mitochondrial dysfunction in oxidative stress-mediated intervertebral disc degeneration. Orthop. Surg. 14, 1569–1582 (2022).
pubmed: 35673928 pmcid: 9363752 doi: 10.1111/os.13302
Grimm, A. & Eckert, A. Brain aging and neurodegeneration: from a mitochondrial point of view. J. Neurochem. 143, 418–431 (2017).
pubmed: 28397282 pmcid: 5724505 doi: 10.1111/jnc.14037
Monzio Compagnoni, G. et al. The role of mitochondria in neurodegenerative diseases: the lesson from Alzheimer’s disease and Parkinson’s disease. Mol. Neurobiol. 57, 2959–2980 (2020).
pubmed: 32445085 doi: 10.1007/s12035-020-01926-1
Belenguer, P., Duarte, J. M., Schuck, P. F. & Ferreira, G. C. Mitochondria and the brain: bioenergetics and beyond. Neurotox. Res. 36, 219–238 (2019).
pubmed: 31152314 doi: 10.1007/s12640-019-00061-7
Pickles, S., Vigié, P. & Youle, R. J. Mitophagy and quality control mechanisms in mitochondrial maintenance. Curr. Biol. 28, R170–R185 (2018).
pubmed: 29462587 pmcid: 7255410 doi: 10.1016/j.cub.2018.01.004
Tang, W., Eisenbrand, G., Tang, W. & Eisenbrand, G. Astragalus membranaceus (Fisch.) Bge. Chinese Drugs of Plant Origin: Chemistry, Pharmacology, and Use in Traditional and Modern Medicine, 191–197 (1992).
Zhang, Z. et al. Astragaloside IV prevents MPP+-induced SH-SY5Y cell death via the inhibition of Bax-mediated pathways and ROS production. Mol. Cell. Biochem. 364, 209–216 (2012).
pubmed: 22278385 doi: 10.1007/s11010-011-1219-1
Zhang, X. & Chen, J. The mechanism of astragaloside IV promoting sciatic nerve regeneration. Neural Regeneration Res. 8, 2256 (2013).
Chen, F. et al. Astragaloside IV ameliorates cognitive impairment and neuroinflammation in an oligomeric aβ induced Alzheimer’s disease mouse model via inhibition of microglial activation and NADPH oxidase expression. Biol. Pharm. Bull. 44, 1688–1696 (2021).
pubmed: 34433707 doi: 10.1248/bpb.b21-00381
Costa, I. M. et al. Astragaloside IV supplementation promotes a neuroprotective effect in experimental models of neurological disorders: a systematic review. Curr. Neuropharmacol. 17, 648–665 (2019).
pubmed: 30207235 pmcid: 6712289 doi: 10.2174/1570159X16666180911123341
Liu, J., Meng, Q., Jing, H. & Zhou, S. Astragaloside IV protects against apoptosis in human degenerative chondrocytes through autophagy activation. Mol. Med. Rep. 16, 3269–3275 (2017).
pubmed: 28714008 pmcid: 5548053 doi: 10.3892/mmr.2017.6980
Tan, Y. Q., Chen, H. W. & Li, J. Astragaloside IV: an effective drug for the treatment of cardiovascular diseases. Drug. Des. Devel. Ther. 14, 3731–3746 (2020).
Gu, D. et al. EGFR mediates astragaloside IV-induced Nrf2 activation to protect cortical neurons against in vitro ischemia/reperfusion damages. Biochem. Biophys. Res. Commun. 457, 391–397 (2015).
pubmed: 25582778 doi: 10.1016/j.bbrc.2015.01.002
Watanabe, Y. et al. p62/SQSTM1-dependent autophagy of Lewy body-like α-synuclein inclusions. PloS one. 7, e52868 (2012).
pubmed: 23300799 pmcid: 3534125 doi: 10.1371/journal.pone.0052868
Liu, B. et al. EVA1A regulates hematopoietic stem cell regeneration via ER-mitochondria mediated apoptosis. Cell Death Dis. 14, 71 (2023).
pubmed: 36717548 pmcid: 9887066 doi: 10.1038/s41419-023-05559-9
Wu, Y. L. et al. In Vitro Efficacy and Molecular Mechanism of Curcumin Analog in Pathological Regulation of Spinocerebellar Ataxia Type 3. Antioxidants. 11, 1389 (2022).
pubmed: 35883884 pmcid: 9311745 doi: 10.3390/antiox11071389
Orr, H. T. Polyglutamine neurodegeneration: expanded glutamines enhance native functions. Curr. Opin. Genet. Dev. 22, 251–255 (2012).
pubmed: 22284692 pmcid: 3340441 doi: 10.1016/j.gde.2012.01.001
Ma, S., Attarwala, I. Y. & Xie, X. Q. SQSTM1/p62: a potential target for neurodegenerative disease. ACS Chem. Neurosci. 10, 2094–2114 (2019).
pubmed: 30657305 doi: 10.1021/acschemneuro.8b00516
Bortnik, S. & Gorski, S. M. Clinical applications of autophagy proteins in cancer: from potential targets to biomarkers. Int. J. Mol. Sci. 18, 1496 (2017).
pubmed: 28696368 pmcid: 5535986 doi: 10.3390/ijms18071496
Checa, J. & Aran, J. M. Reactive oxygen species: drivers of physiological and pathological processes. J. Inflamm. Res. 13, 1057–1073 (2020).
Gui, D. et al. Astragaloside IV, a novel antioxidant, prevents glucose-induced podocyte apoptosis in vitro and in vivo. PloS one. 7, e39824 (2012).
pubmed: 22745830 pmcid: 3382154 doi: 10.1371/journal.pone.0039824
Sun, Q. et al. Protective effects of astragaloside IV against amyloid beta1-42 neurotoxicity by inhibiting the mitochondrial permeability transition pore opening. PloS one. 9, e98866 (2014).
pubmed: 24905226 pmcid: 4048237 doi: 10.1371/journal.pone.0098866
Sienes Bailo, P. et al. The role of oxidative stress in neurodegenerative diseases and potential antioxidant therapies. Adv. Lab. Medicine/Avances en Med. de Laboratorio. 3, 342–350 (2022).
doi: 10.1515/almed-2022-0111
Liu, Z., Zhou, T., Ziegler, A. C., Dimitrion, P. & Zuo, L. Oxidative stress in neurodegenerative diseases: from molecular mechanisms to clinical applications. Oxidative Med. Cell. Longev. 2017, 252596 (2017).
Federico, A. et al. Mitochondria, oxidative stress and neurodegeneration. J. Neurol. Sci. 322, 254–262 (2012).
pubmed: 22669122 doi: 10.1016/j.jns.2012.05.030
Angelova, P. R. & Abramov, A. Y. Role of mitochondrial ROS in the brain: from physiology to neurodegeneration. FEBS Lett. 592, 692–702 (2018).
pubmed: 29292494 doi: 10.1002/1873-3468.12964
Chang, J. C. et al. Far-infrared radiation protects viability in a cell model of Spinocerebellar Ataxia by preventing polyQ protein accumulation and improving mitochondrial function. Sci. Rep. 6, 30436 (2016).
pubmed: 27469193 pmcid: 4965738 doi: 10.1038/srep30436
Hsu, J. Y. et al. The truncated C-terminal fragment of mutant ATXN3 disrupts mitochondria dynamics in spinocerebellar ataxia type 3 models. Front. Mol. Neurosci. 10, 196 (2017).
pubmed: 28676741 pmcid: 5476786 doi: 10.3389/fnmol.2017.00196
Youle, R. J. & Van Der Bliek, A. M. Mitochondrial fission, fusion, and stress. Science. 337, 1062–1065 (2012).
pubmed: 22936770 pmcid: 4762028 doi: 10.1126/science.1219855

Auteurs

Yongshiou Lin (Y)

Vascular and Genomic Center, Institute of ATPChanghua Christian Hospital, Changhua, Taiwan.

Wenling Cheng (W)

Vascular and Genomic Center, Institute of ATPChanghua Christian Hospital, Changhua, Taiwan.

Juichih Chang (J)

Center of Regenerative Medicine and Tissue Repair, Institute of ATPChanghua Christian Hospital, Changhua, Taiwan.
General Research Laboratory of Research Department, Changhua Christian Hospital, Changhua, Taiwan.

Yuling Wu (Y)

Cardiovascular and Mitochondrial Related Disease Research CenterHualien Tzu Chi HospitalBuddhist Tzu Chi Medical Foundation, Hualien, Taiwan.

Mingli Hsieh (M)

Department of Life Science, Tunghai University, Taichung, Taiwan.

Chinsan Liu (C)

Vascular and Genomic Center, Institute of ATPChanghua Christian Hospital, Changhua, Taiwan. liu48111@gmail.com.
Department of Neurology, Changhua Christian Hospital, 7F., No.235, Syuguang Rd., Changhua, Taiwan. liu48111@gmail.com.
Graduate Institute of Integrated Medicine, China Medical University, Taichung, Taiwan. liu48111@gmail.com.
Department of Post-Baccalaureate MedicineCollege of Medicine, National Chung Hsing University, Taichung, Taiwan. liu48111@gmail.com.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH