Comprehensive mapping of synaptic vesicle protein 2A (SV2A) in health and neurodegenerative diseases: a comparative analysis with synaptophysin and ground truth for PET-imaging interpretation.


Journal

Acta neuropathologica
ISSN: 1432-0533
Titre abrégé: Acta Neuropathol
Pays: Germany
ID NLM: 0412041

Informations de publication

Date de publication:
30 Oct 2024
Historique:
received: 15 08 2024
accepted: 09 10 2024
revised: 27 09 2024
medline: 31 10 2024
pubmed: 30 10 2024
entrez: 30 10 2024
Statut: epublish

Résumé

Synaptic dysfunction and loss are central to neurodegenerative diseases and correlate with cognitive decline. Synaptic Vesicle Protein 2A (SV2A) is a promising PET-imaging target for assessing synaptic density in vivo, but comprehensive mapping in the human brain is needed to validate its biomarker potential. This study used quantitative immunohistochemistry and Western blotting to map SV2A and synaptophysin (SYP) densities across six cortical regions in healthy controls and patients with early-onset Alzheimer's disease (EOAD), late-onset Alzheimer's disease (LOAD), progressive supranuclear palsy (PSP), and frontotemporal lobar degeneration with TDP-43 inclusions (FTLD-GRN). We identified region in SV2A density among controls and observed disease- and region-specific reductions, with the most severe in FTLD-GRN (up to 59.5%) and EOAD. EOAD showed a 49% reduction in the middle frontal gyrus (MFG), while LOAD had over 30% declines in the inferior frontal gyrus (IFG) and hippocampus (CA1). In PSP, smaller but significant reductions were noted in the hippocampal formation, with the inferior temporal gyrus (ITG) relatively unaffected. A strong positive correlation between SV2A and SYP densities confirmed SV2A's reliability as a synaptic integrity marker. This study supports the use of SV2A PET imaging for early diagnosis and monitoring of neurodegenerative diseases, providing essential data for interpreting in vivo PET results. Further research should explore SV2A as a therapeutic target and validate these findings in larger, longitudinal studies.

Identifiants

pubmed: 39476256
doi: 10.1007/s00401-024-02816-9
pii: 10.1007/s00401-024-02816-9
doi:

Substances chimiques

Synaptophysin 0
SV2A protein, human 148845-93-6
Membrane Glycoproteins 0
Nerve Tissue Proteins 0
SYP protein, human 0

Types de publication

Journal Article Comparative Study

Langues

eng

Sous-ensembles de citation

IM

Pagination

58

Subventions

Organisme : NIA NIH HHS
ID : P30AG062422
Pays : United States
Organisme : NIA NIH HHS
ID : P30AG062422
Pays : United States
Organisme : NIA NIH HHS
ID : P30AG062422
Pays : United States
Organisme : NIA NIH HHS
ID : P30AG062422
Pays : United States
Organisme : Alzheimer's Association
ID : AARG-20-678884
Pays : United States

Informations de copyright

© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.

Références

Andersen KB, Hansen AK, Damholdt MF et al (2021) Reduced synaptic density in patients with lewy body dementia: an [11 C]UCB-J PET Imaging Study. Mov Disord 36:2057–2065. https://doi.org/10.1002/mds.28617
doi: 10.1002/mds.28617 pubmed: 33899255
de Wilde MC, Overk CR, Sijben JW, Masliah E (2016) Meta-analysis of synaptic pathology in Alzheimer’s disease reveals selective molecular vesicular machinery vulnerability. Alzheimers Dement 12:633–644. https://doi.org/10.1016/j.jalz.2015.12.005
doi: 10.1016/j.jalz.2015.12.005 pubmed: 26776762
Holland N, Malpetti M, Rittman T et al (2022) Molecular pathology and synaptic loss in primary tauopathies: an 18F-AV-1451 and PET study. Brain 145:340–348. https://doi.org/10.1093/brain/awab282
doi: 10.1093/brain/awab282 pubmed: 34398211
Malpetti M, Jones PS, Cope TE et al (2023) Synaptic loss in frontotemporal dementia revealed by [11 C]UCB-J positron emission tomography. Ann Neurol 93:142–154. https://doi.org/10.1002/ana.26543
doi: 10.1002/ana.26543 pubmed: 36321699
Terry RD, Masliah E, Salmon DP et al (1991) Physical basis of cognitive alterations in Alzheimer’s disease: synapse loss is the major correlate of cognitive impairment. Ann Neurol 30:572–580. https://doi.org/10.1002/ana.410300410
doi: 10.1002/ana.410300410 pubmed: 1789684
Wilson H, Pagano G, de Natale ER et al (2020) Mitochondrial complex 1, Sigma 1, and synaptic vesicle 2A in early drug-naive Parkinson’s disease. Mov Disord 35:1416–1427. https://doi.org/10.1002/mds.28064
doi: 10.1002/mds.28064 pubmed: 32347983
Takamori S, Holt M, Stenius K et al (2006) Molecular anatomy of a trafficking organelle. Cell 127:831–846. https://doi.org/10.1016/j.cell.2006.10.030
doi: 10.1016/j.cell.2006.10.030 pubmed: 17110340
Clare R, King VG, Wirenfeldt M, Vinters HV (2010) Synapse loss in dementias. J Neurosci Res 88:2083–2090. https://doi.org/10.1002/jnr.22392
doi: 10.1002/jnr.22392 pubmed: 20533377 pmcid: 3068914
Masliah E, Terry RD, Alford M, DeTeresa R (1990) Quantitative immunohistochemistry of synaptophysin in human neocortex: an alternative method to estimate density of presynaptic terminals in paraffin sections. J Histochem Cytochem 38:837–844. https://doi.org/10.1177/38.6.2110586
doi: 10.1177/38.6.2110586 pubmed: 2110586
Bajjalieh SM, Frantz GD, Weimann JM et al (1994) Differential expression of synaptic vesicle protein 2 (SV2) isoforms. J Neurosci 14:5223–5235. https://doi.org/10.1523/JNEUROSCI.14-09-05223.1994
doi: 10.1523/JNEUROSCI.14-09-05223.1994 pubmed: 8083732 pmcid: 6577109
Varnäs K, Stepanov V, Halldin C (2020) Autoradiographic mapping of synaptic vesicle glycoprotein 2A in non-human primate and human brain. Synapse 74:e22157. https://doi.org/10.1002/syn.22157
doi: 10.1002/syn.22157 pubmed: 32259300
Finnema SJ, Nabulsi NB, Eid T et al (2016) Imaging synaptic density in the living human brain. Sci Transl Med 8:348ra96. https://doi.org/10.1126/scitranslmed.aaf6667
doi: 10.1126/scitranslmed.aaf6667 pubmed: 27440727
Robinson JL, Molina-Porcel L, Corrada MM et al (2014) Perforant path synaptic loss correlates with cognitive impairment and Alzheimer’s disease in the oldest-old. Brain 137:2578–2587. https://doi.org/10.1093/brain/awu190
doi: 10.1093/brain/awu190 pubmed: 25012223 pmcid: 4132652
Bavarsad MS, Grinberg LT (2024) SV2A PET imaging in human neurodegenerative diseases. Front Aging Neurosci 16:1380561. https://doi.org/10.3389/fnagi.2024.1380561
doi: 10.3389/fnagi.2024.1380561 pubmed: 38699560 pmcid: 11064927
Suemoto CK, Ferretti-Rebustini REL, Rodriguez RD et al (2017) Neuropathological diagnoses and clinical correlates in older adults in Brazil: A cross-sectional study. PLoS Med 14:e1002267. https://doi.org/10.1371/journal.pmed.1002267
doi: 10.1371/journal.pmed.1002267 pubmed: 28350821 pmcid: 5369698
Mackenzie IRA, Neumann M, Baborie A et al (2011) A harmonized classification system for FTLD-TDP pathology. Acta Neuropathol 122:111–113. https://doi.org/10.1007/s00401-011-0845-8
doi: 10.1007/s00401-011-0845-8 pubmed: 21644037 pmcid: 3285143
Montine TJ, Phelps CH, Beach TG et al (2012) National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease: a practical approach. Acta Neuropathol 123:1–11. https://doi.org/10.1007/s00401-011-0910-3
doi: 10.1007/s00401-011-0910-3 pubmed: 22101365
Spina S, La Joie R, Petersen C et al (2021) Comorbid neuropathological diagnoses in early versus late-onset Alzheimer’s disease. Brain 144:2186–2198. https://doi.org/10.1093/brain/awab099
doi: 10.1093/brain/awab099 pubmed: 33693619 pmcid: 8502474
Roemer SF, Grinberg LT, Crary JF et al (2022) Rainwater Charitable Foundation criteria for the neuropathologic diagnosis of progressive supranuclear palsy. Acta Neuropathol 144:603–614. https://doi.org/10.1007/s00401-022-02479-4
doi: 10.1007/s00401-022-02479-4 pubmed: 35947184 pmcid: 9468104
Colom-Cadena M, Spires-Jones T, Zetterberg H et al (2020) The clinical promise of biomarkers of synapse damage or loss in Alzheimer’s disease. Alzheimers Res Ther 12:21. https://doi.org/10.1186/s13195-020-00588-4
doi: 10.1186/s13195-020-00588-4 pubmed: 32122400 pmcid: 7053087
Brun A, Liu X, Erikson C (1995) Synapse loss and gliosis in the molecular layer of the cerebral cortex in Alzheimer’s disease and in frontal lobe degeneration. Neurodegeneration 4:171–177. https://doi.org/10.1006/neur.1995.0021
doi: 10.1006/neur.1995.0021 pubmed: 7583681
Liu X, Erikson C, Brun A (1996) Cortical synaptic changes and gliosis in normal aging, Alzheimer’s disease and frontal lobe degeneration. Dement Geriatr Cogn Disord 7:128–134. https://doi.org/10.1159/000106867
doi: 10.1159/000106867
Ferrer I (1999) Neurons and their dendrites in frontotemporal dementia. Dement Geriatr Cogn Disord 10(Suppl 1):55–60. https://doi.org/10.1159/000051214
doi: 10.1159/000051214 pubmed: 10436342
Lipton AM, Cullum CM, Satumtira S et al (2001) Contribution of asymmetric synapse loss to lateralizing clinical deficits in frontotemporal dementias. Arch Neurol 58:1233–1239. https://doi.org/10.1001/archneur.58.8.1233
doi: 10.1001/archneur.58.8.1233 pubmed: 11493163
Scheff SW, DeKosky ST, Price DA (1990) Quantitative assessment of cortical synaptic density in Alzheimer’s disease. Neurobiol Aging 11:29–37. https://doi.org/10.1016/0197-4580(90)90059-9
doi: 10.1016/0197-4580(90)90059-9 pubmed: 2325814
Gómez-Isla T, Price JL, McKeel DW et al (1996) Profound loss of layer II entorhinal cortex neurons occurs in very mild Alzheimer’s disease. J Neurosci 16:4491–4500. https://doi.org/10.1523/JNEUROSCI.16-14-04491.1996
doi: 10.1523/JNEUROSCI.16-14-04491.1996 pubmed: 8699259 pmcid: 6578866
Scheff SW, Price DA (2003) Synaptic pathology in Alzheimer’s disease: a review of ultrastructural studies. Neurobiol Aging 24:1029–1046. https://doi.org/10.1016/j.neurobiolaging.2003.08.002
doi: 10.1016/j.neurobiolaging.2003.08.002 pubmed: 14643375
Scheff SW, Price DA, Schmitt FA et al (2007) Synaptic alterations in CA1 in mild Alzheimer disease and mild cognitive impairment. Neurology 68:1501–1508. https://doi.org/10.1212/01.wnl.0000260698.46517.8f
doi: 10.1212/01.wnl.0000260698.46517.8f pubmed: 17470753
Korczyn AD, Grinberg LT (2024) Is Alzheimer disease a disease? Nat Rev Neurol 20:245–251. https://doi.org/10.1038/s41582-024-00940-4
doi: 10.1038/s41582-024-00940-4 pubmed: 38424454
Mikkelsen JD, Kaad S, Aripaka SS, Finsen B (2023) Synaptic vesicle glycoprotein 2A (SV2A) levels in the cerebral cortex in patients with Alzheimer’s disease: a radioligand binding study in postmortem brains. Neurobiol Aging 129:50–57. https://doi.org/10.1016/j.neurobiolaging.2023.05.003
doi: 10.1016/j.neurobiolaging.2023.05.003 pubmed: 37269646
Metaxas A, Thygesen C, Briting SRR et al (2019) Increased inflammation and unchanged density of synaptic vesicle glycoprotein 2A (SV2A) in the postmortem frontal cortex of alzheimer’s disease patients. Front Cell Neurosci 13:538. https://doi.org/10.3389/fncel.2019.00538
doi: 10.3389/fncel.2019.00538 pubmed: 31866830 pmcid: 6906198
Planche V, Mansencal B, Manjon JV et al (2024) Staging of progressive supranuclear palsy-Richardson syndrome using MRI brain charts for the human lifespan. Brain Commun 6:fcae055. https://doi.org/10.1093/braincomms/fcae055
doi: 10.1093/braincomms/fcae055 pubmed: 38444913 pmcid: 10914441
Bigio EH, Vono MB, Satumtira S et al (2001) Cortical synapse loss in progressive supranuclear palsy. J Neuropathol Exp Neurol 60:403–410. https://doi.org/10.1093/jnen/60.5.403
doi: 10.1093/jnen/60.5.403 pubmed: 11379815
Holland N, Jones PS, Savulich G et al (2020) Synaptic Loss in Primary Tauopathies Revealed by [11 C]UCB-J Positron Emission Tomography. Mov Disord 35:1834–1842. https://doi.org/10.1002/mds.28188
doi: 10.1002/mds.28188 pubmed: 32652635 pmcid: 7611123
Mutch SA, Kensel-Hammes P, Gadd JC et al (2011) Protein quantification at the single vesicle level reveals that a subset of synaptic vesicle proteins are trafficked with high precision. J Neurosci 31:1461–1470. https://doi.org/10.1523/JNEUROSCI.3805-10.2011
doi: 10.1523/JNEUROSCI.3805-10.2011 pubmed: 21273430 pmcid: 3078718

Auteurs

Mahsa Shanaki Bavarsad (M)

Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.

Salvatore Spina (S)

Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.

Abby Oehler (A)

Institute for Neurodegenerative Diseases, University of California, San Francisco (UCSF), San Francisco, USA.

Isabel E Allen (IE)

Department of Biostatistics and Epidemiology, University of California, San Francisco (UCSF), San Francisco, USA.

Claudia K Suemoto (CK)

Discipline of Geriatrics, University of Sao Paulo Medical School, Sao Paulo, Brazil.

Renata E P Leite (REP)

Department of Pathology, Lim22, University of Sao Paulo Medical School, Sao Paulo, Brazil.

William S Seeley (WS)

Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.

Ari Green (A)

Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), San Francisco, USA.

William Jagust (W)

Department of Neuroscience, University of California Berkeley, Berkeley, USA.

Gil D Rabinovici (GD)

Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA.

Lea T Grinberg (LT)

Memory and Aging Center, Department of Neurology, Weill Institute for Neurosciences, University of California, San Francisco (UCSF), 675 Nelson Rising Lane, Suite 190, San Francisco, CA, 94158, USA. lea.grinberg@ucsf.edu.
Department of Pathology, Lim22, University of Sao Paulo Medical School, Sao Paulo, Brazil. lea.grinberg@ucsf.edu.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH