Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan. Electronic address: nishino@ncnp.go.jp.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France.
Department of Neuromuscular Research, National Institute of Neuroscience, National Center of Neurology and Psychiatry, 187-8502 Tokyo, Japan; Department of Genome Medicine Development, Medical Genome Center, National Center of Neurology and Psychiatry, 187-8551 Tokyo, Japan.
From the Department of Learning, Informatics and Medical Education, Karolinska Institutet; Function Area Occupational Therapy and Physical Therapy, Allied Health Professionals Function, Karolinska University Hospital, Department of Neurobiology, Care Science and Society, Division of Physiotherapy and Department of Medicine, Karolinska Institutet; Division of Rheumatology, Rheumatology Unit, Department of Medicine, Karolinska Institutet, Solna, Sweden; Division of Rheumatology, Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA; Division of Rheumatology, Department of Internal Medicine, Medical Research Center, College of Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University, Seoul, Korea; Division of Rheumatology, Fiona Stanley Hospital, Institute for Immunology and Infectious Diseases, Murdoch University, Perth; The Notre Dame University Fremantle, Fremantle, Australia; Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, the Netherlands; Center for Global Health, University of Ottawa, Ottawa, Ontario, Canada.
M. Regardt, PhD, Occupational Therapist, Department of Learning, Informatics and Medical Education, Karolinska Institutet, and Function Area Occupational Therapy and Physical Therapy, Allied Health Professionals Function, Karolinska University Hospital; C.A. Mecoli, MD, Division of Rheumatology, Department of Medicine, Johns Hopkins University; J.K. Park, MD, PhD, Division of Rheumatology, Department of Internal Medicine, Seoul National University Hospital; I. de Groot, Patient Research Partner; C. Sarver, Patient Research Partner; M. Needham, MD, Division of Rheumatology, Fiona Stanley Hospital, Institute for Immunology and Infectious Diseases, Murdoch University, and The Notre Dame University; M. de Visser, MD, PhD, Amsterdam UMC, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience; B. Shea, MSN, Center for Global Health, University of Ottawa; C.O. Bingham III, MD, Division of Rheumatology, Department of Medicine, Johns Hopkins University; I.E. Lundberg, MD, PhD, Division of Rheumatology, Rheumatology Unit, Department of Medicine, Karolinska Institutet; Y.W. Song, MD, PhD, Division of Rheumatology, Department of Internal Medicine, Medical Research Center, College of Medicine, Department of Molecular Medicine and Biopharmaceutical Sciences, Seoul National University; L. Christopher-Stine, MD, Division of Rheumatology, Department of Medicine, Johns Hopkins University; H. Alexanderson, PhD, Physiotherapist, Department of Neurobiology, Care Science and Society, Division of Physiotherapy and Department of Medicine Solna, Karolinska Institutet, and Function Area Occupational Therapy and Physical Therapy, Allied Health Professionals Function, Karolinska University Hospital. M. Regardt and Dr. C. Mecoli are co-first authors.
Department of Neuromuscular Research, National Center of Neurology and Psychiatry (NCNP), National Institute of Neuroscience, 4-1-1 Ogawahigashi, Tokyo 187-8502, Japan; Medical Genome Center, NCNP, Tokyo, Kodaira, Japan; Department of Pediatrics, Showa General Hospital, Tokyo, Kodaira, Japan.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France.
INSERM, GIN-U1216, CHU Grenoble Alpes, Grenoble Institut Neurosciences, University Grenoble Alpes, Bat EJ Safra, Chemin Fortuné Ferrini, La Tronche, Grenoble, France. isabelle.marty@univ-grenoble-alpes.fr.
Neuromuscular Morphology Unit, Myology Institute, Groupe Hospitalier Universitaire La Pitié-Salpêtrière, Paris, France. matteo.garibaldi@uniroma1.it.
Unit of Neuromuscular Diseases, Neuromuscular Disease Centre, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy. matteo.garibaldi@uniroma1.it.
Service Neurologie Médicale, Centre de Référence Maladies Neuromusculaire Paris-Est-Ile de France, CHU Raymond-Poincaré Paris Ouest, Garches, France.
U1179 UVSQ-INSERM Handicap Neuromusculaire: Physiologie, Biothérapie et Pharmacologie appliquées, UFR des sciences de la santé Simone Veil, Université Versailles-Saint-Quentin-en-Yvelines, Versailles, France.
Unit of Neuromuscular Diseases, Neuromuscular Disease Centre, Department of Neurology Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
Camellia sinensis and Camellia assamica are well known for their medicinal and therapeutic potential. The purpose of this work is to assess the flavonoid content and antioxidant potential of methanol ...
Thiamethoxam (TMX) is insecticidal, but also can trigger physiological and metabolic reactions of plant cycles. The objective of this work was to evaluate the physiological and metabolic effect of TMX...
In this study, dose of TMX (0.09, 0.135 and 0.18 kg a.i./ha) were tested. Except for peroxidase (POD) and glutathione S-transferase (GST), chlorophyll, carotenoid, catalase (CAT) and malondialdehyde (...
Thiamethoxam spray positively promoted the physiological and metabolic response of tea plants. And this work also provided the useful information of TMX metabolism in tea plants as well as rational ap...
CsGolS2-1 and CsGolS2-2 are involved in the transcriptional mechanism and play an important role in the drought response of tea plants. GolS is critical for the biosynthesis of galactinol and has been...
Tea is among the most consumed nonalcoholic beverages worldwide. Understanding tea flavor, in terms of both sensory aspects and chemical properties, is essential for manufacturers and consumers to mai...
Camellia sinensis (L.) is a perennial evergreen woody plant with the potential for environmental pollution due to its unique growth environment and extended growth cycle. Pollution sources and pathway...
Genome variation not only plays an important role in plant phenotypic modeling and adaptive evolution, but also enhances population genetic diversity and regulates gene expression. The tea tree (Camel...
Tea plants (Camellia sinensis) typically contain high-flavonoid phytochemicals like catechins. Recently, new tea cultivars with unique purple-colored leaves have gained attention. These purple tea cul...
To evaluate the fluoride concentration and pH of tea derived from Camellia sinensis produced and commercialized in Argentina. Forty-eight varieties of tea (black (n = 16), green (n = 21), red (n = 7),...
14-3-3 proteins are signal moderators in sensing various stresses and play essential functions in plant growth and development. Although, 14-3-3 gene families have been identified and characterized in...
CsNAC086 was found to promote the expression of CsFLS, thus promoting the accumulation of flavonols in Camellia sinensis. Flavonols, the main flavonoids in tea plants, play an important role in the ta...