A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay.


Journal

Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831

Informations de publication

Date de publication:
05 2019
Historique:
received: 05 06 2018
accepted: 17 08 2018
pubmed: 25 9 2018
medline: 4 9 2019
entrez: 25 9 2018
Statut: ppublish

Résumé

Contiguous gene deletions are known to cause several neurodevelopmental syndromes, many of which are caused by recurrent events on chromosome 16. However, chromosomal microarray studies (CMA) still yield copy-number variants (CNVs) of unknown clinical significance. We sought to characterize eight individuals with overlapping 205-kb to 504-kb 16p13.3 microdeletions that are distinct from previously published deletion syndromes. Clinical information on the patients and bioinformatic scores for the deleted genes were analyzed. All individuals in our cohort displayed developmental delay, intellectual disability, and various forms of seizures. Six individuals were microcephalic and two had strabismus. The deletion was absent in all 13 parents who were available for testing. The area of overlap encompasses seven genes including TBC1D24, ATP6V0C, and PDPK1 (also known as PDK1). Bi-allelic TBC1D24 pathogenic variants are known to cause nonsyndromic deafness, epileptic disorders, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, seizures). Sanger sequencing of the nondeleted TBC1D24 allele did not yield any additional pathogenic variants. We propose that 16p13.3 microdeletions resulting in simultaneous haploinsufficiencies of TBC1D24, ATP6V0C, and PDPK1 cause a novel rare contiguous gene deletion syndrome of microcephaly, developmental delay, intellectual disability, and epilepsy.

Identifiants

pubmed: 30245510
doi: 10.1038/s41436-018-0290-3
pii: S1098-3600(21)01466-0
doi:

Substances chimiques

ATP6V0C protein, human 0
GTPase-Activating Proteins 0
Membrane Proteins 0
Nerve Tissue Proteins 0
TBC1D24 protein, human 0
3-Phosphoinositide-Dependent Protein Kinases EC 2.7.11.1
PDPK1 protein, human EC 2.7.11.1
Vacuolar Proton-Translocating ATPases EC 3.6.1.-

Types de publication

Journal Article

Langues

eng

Sous-ensembles de citation

IM

Pagination

1058-1064

Commentaires et corrections

Type : ErratumIn

Références

Campeau PM, Kasperaviciute D, Lu JT, et al. The genetic basis of DOORS syndrome: an exome-sequencing study. Lancet Neurol. 2014;13:44–58.
doi: 10.1016/S1474-4422(13)70265-5
Banuelos E, Ramsey K, Belnap N. et al. Case report: novel mutations in TBC1D24 are associated with autosomal dominant tonic-clonic and myoclonic epilepsy and recessive Parkinsonism, psychosis, and intellectual disability. F1000Res. 2017;6:553.
doi: 10.12688/f1000research.10588.1
Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.
doi: 10.1101/gr.229102
Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 2010;6:e1001154.
doi: 10.1371/journal.pgen.1001154
Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285.
doi: 10.1038/nature19057
Quinodoz M, Royer-Bertrand B, Cisarova K, Di Gioia SA, Superti-Furga A, Rivolta C. DOMINO: using machine learning to predict genes associated with dominant disorders. Am J Hum Genet. 2017;101:623–629.
doi: 10.1016/j.ajhg.2017.09.001
Bartsch O, Rasi S, Delicado A, et al. Evidence for a new contiguous gene syndrome, the chromosome 16p13.3 deletion syndrome alias severe Rubinstein-Taybi syndrome. Hum Genet. 2006;120:179–186.
doi: 10.1007/s00439-006-0215-0
Nelson M, Quinonez S, Ackley T, Iyer RK, Innis JW. Multiple congenital anomalies and developmental delay in a boy associated with a de novo 16p13.3 deletion. Am J Med Genet A. 2011;155A:612–617.
doi: 10.1002/ajmg.a.33808
Ghebranious N, Giampietro PF, Wesbrook FP, Rezkalla SH. A novel microdeletion at 16p11. 2 harbors candidate genes for aortic valve development, seizure disorder, and mild mental retardation. Am J Med Genet A. 2007;143:1462–1471.
doi: 10.1002/ajmg.a.31837
Bijlsma E, Gijsbers A, Schuurs-Hoeijmakers J, et al. Extending the phenotype of recurrent rearrangements of 16p11. 2: deletions in mentally retarded patients without autism and in normal individuals. Eur J Med Genet. 2009;52:77–87.
doi: 10.1016/j.ejmg.2009.03.006
Cooper GM, Coe BP, Girirajan S, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43:838.
doi: 10.1038/ng.909
Coe BP, Witherspoon K, Rosenfeld JA, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46:1063.
doi: 10.1038/ng.3092
Männik K, Mägi R, Macé A, et al. Copy number variations and cognitive phenotypes in unselected populations. JAMA. 2015;313:2044–2054.
doi: 10.1001/jama.2015.4845
Vulto‐van Silfhout AT, Hehir‐Kwa JY, Bon BW, et al. Clinical significance of de novo and inherited copy‐number variation. Hum Mutat. 2013;34:1679–1687.
doi: 10.1002/humu.22442
Fitzgerald T, Gerety S, Jones W, et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519:223.
doi: 10.1038/nature14135
Fischer B, Lüthy K, Paesmans J, et al. Skywalker-TBC1D24 has a lipid-binding pocket mutated in epilepsy and required for synaptic function. Nat Struct Mol Biol. 2016;23:965.
doi: 10.1038/nsmb.3297
Mangieri LR, Mader BJ, Thomas CE, et al. ATP6V0C knockdown in neuroblastoma cells alters autophagy-lysosome pathway function and metabolism of proteins that accumulate in neurodegenerative disease. PLoS ONE. 2014;9:e93257.
doi: 10.1371/journal.pone.0093257
Chung AY, Kim MJ, Kim D, et al. Neuron‐specific expression of atp6v0c2 in zebrafish CNS. Dev Dyn. 2010;239:2501–2508.
doi: 10.1002/dvdy.22383
Gagliardi PA, di Blasio L, Primo L. PDK1: A signaling hub for cell migration and tumor invasion. Biochim Biophys Acta. 2015;1856:178–188.
pubmed: 26238471
di Blasio L, Gagliardi PA, Puliafito A, et al. PDK1 regulates focal adhesion disassembly by modulating endocytosis of αvβ3 integrin. J Cell Sci. 2015;128:863–877.
doi: 10.1242/jcs.149294
Lawlor MA, Mora A, Ashby PR, et al. Essential role of PDK1 in regulating cell size and development in mice. EMBO J. 2002;21:3728–3738.
doi: 10.1093/emboj/cdf387
Bayascas JR, Wullschleger S, Sakamoto K, et al. Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance. Mol Cell Biol. 2008;28:3258–3272.
doi: 10.1128/MCB.02032-07
Zurashvili T, Cordón-Barris L, Ruiz-Babot G, et al. Interaction of PDK1 with phosphoinositides is essential for neuronal differentiation but dispensable for neuronal survival. Mol Cell Biol. 2013;33:1027–1040.
doi: 10.1128/MCB.01052-12
Bergfeld AK, Pearce OM, Diaz SL, Pham T, Varki A. Metabolism of vertebrate amino sugars with N-glycolyl groups: elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid. J Biol Chem. 2012;287:28865–28881.
doi: 10.1074/jbc.M112.363549
Diaz SL, Padler-Karavani V, Ghaderi D, et al. Sensitive and specific detection of the non-human sialic acid N-glycolylneuraminic acid in human tissues and biotherapeutic products. PLoS ONE. 2009;4:e4241.
doi: 10.1371/journal.pone.0004241
Alvarez-Pérez MA, Narayanan S, Zeichner-David M, Carmona BR, Arzate H. Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23). Bone. 2006;38:409–419.
doi: 10.1016/j.bone.2005.09.009
Li W, Shen S, Wu S, Chen Z, Hu C, Yan R. Regulation of tumorigenesis and metastasis of hepatocellular carcinoma tumor endothelial cells by microRNA-3178 and underlying mechanism. Biochem Biophys Res Commun. 2015;464:881–887.
doi: 10.1016/j.bbrc.2015.07.057
Zara F, Gennaro E, Stabile M, et al. Mapping of a locus for a familial autosomal recessive idiopathic myoclonic epilepsy of infancy to chromosome 16p13. Am J Hum Genet. 2000;66:1552–1557.
doi: 10.1086/302876
Balestrini S, Milh M, Castiglioni C, et al. TBC1D24 genotype–phenotype correlation: epilepsies and other neurologic features. Neurology. 2016;87:77–85.
doi: 10.1212/WNL.0000000000002807
Hirtz D, Thurman D, Gwinn-Hardy K, Mohamed M, Chaudhuri A, Zalutsky R. How common are the “common” neurologic disorders? Neurology. 2007;68:326–337.
doi: 10.1212/01.wnl.0000252807.38124.a3
Falace A, Buhler E, Fadda M, et al. TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway. Proc Natl Acad Sci U S A. 2014;111:2337–2342.
doi: 10.1073/pnas.1316294111
Inoue H, Noumi T, Nagata M, Murakami H, Kanazawa H. Targeted disruption of the gene encoding the proteolipid subunit of mouse vacuolar H+-ATPase leads to early embryonic lethality. Biochim Biophys Acta. 1999;1413:130–138.
doi: 10.1016/S0005-2728(99)00096-1
Sun-Wada G-H, Murata Y, Yamamoto A, Kanazawa H, Wada Y, Futai M. Acidic endomembrane organelles are required for mouse postimplantation development. Dev Biol. 2000;228:315–325.
doi: 10.1006/dbio.2000.9963
Carvill GL, Weckhuysen S, McMahon JM, et al. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology. 2014;82:1245–1253.
doi: 10.1212/WNL.0000000000000291
Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511:344.
doi: 10.1038/nature13394
Helbig KL, Hagman KDF, Shinde DN, et al. Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med. 2016;18:898.
doi: 10.1038/gim.2015.186
Bowling KM, Thompson ML, Amaral MD, et al. Genomic diagnosis for children with intellectual disability and/or developmental delay. Genome Med. 2017;9:43.
doi: 10.1186/s13073-017-0433-1
Hamdan FF, Myers CT, Cossette P, et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet. 2017;101:664–685.
doi: 10.1016/j.ajhg.2017.09.008
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433.
doi: 10.1038/nature21062

Auteurs

Bettina E Mucha (BE)

Division of Medical Genetics, Department of Specialized Medicine, McGill University Health Centre, Montreal, QC, Canada.

Siddharth Banka (S)

Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, M13 9PL, Manchester, UK.

Norbert Fonya Ajeawung (NF)

Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada.

Sirinart Molidperee (S)

Centre de Recherche du CHU Sainte-Justine, Montreal, QC, Canada.

Gary G Chen (GG)

Department of Psychiatry, McGill University, Montreal, QC, Canada.

Mary Kay Koenig (MK)

Department of Pediatrics, Division of Child & Adolescent Neurology, The University of Texas McGovern Medical School, Houston, TX, USA.

Rhamat B Adejumo (RB)

Department of Pediatrics, Division of Child & Adolescent Neurology, The University of Texas McGovern Medical School, Houston, TX, USA.

Marianne Till (M)

Service de Génétique CHU de Lyon-GH Est, Lyon, France.

Michael Harbord (M)

Department of Pediatrics, Flinders Medical Centre, Bedford Park, SA, Australia.

Renee Perrier (R)

Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.

Emmanuelle Lemyre (E)

Department of Pediatrics, Université de Montréal, Montreal, QC, Canada.

Renee-Myriam Boucher (RM)

Department of Pediatrics, CHU Laval, Quebec City, QC, Canada.

Brian G Skotko (BG)

Division of Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.

Jessica L Waxler (JL)

Division of Medical Genetics, Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA.

Mary Ann Thomas (MA)

Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.

Jennelle C Hodge (JC)

Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.

Jozef Gecz (J)

Adelaide Medical School and Robinson Research Institute, The University of Adelaide, Adelaide, Australia.

Jillian Nicholl (J)

South Australian Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, Australia.

Lesley McGregor (L)

South Australian Clinical Genetics Service, SA Pathology, Women's and Children's Hospital, Adelaide, Australia.

Tobias Linden (T)

Klinik für Neuropädiatrie und Stoffwechselerkrankungen, Zentrum für Kinder- und Jugendmedizin, Oldenburg, Germany.

Sanjay M Sisodiya (SM)

Department of Clinical and Experimental Epilepsy, Institute of Neurology, University College London, London, United Kingdom.
Chalfont Centre for Epilepsy, Bucks, United Kingdom.

Damien Sanlaville (D)

Service de Génétique CHU de Lyon-GH Est, Lyon, France.

Sau W Cheung (SW)

Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.

Carl Ernst (C)

Department of Psychiatry, McGill University, Montreal, QC, Canada.

Philippe M Campeau (PM)

Department of Pediatrics, Université de Montréal, Montreal, QC, Canada. p.campeau@umontreal.ca.

Articles similaires

[Redispensing of expensive oral anticancer medicines: a practical application].

Lisanne N van Merendonk, Kübra Akgöl, Bastiaan Nuijen
1.00
Humans Antineoplastic Agents Administration, Oral Drug Costs Counterfeit Drugs

Smoking Cessation and Incident Cardiovascular Disease.

Jun Hwan Cho, Seung Yong Shin, Hoseob Kim et al.
1.00
Humans Male Smoking Cessation Cardiovascular Diseases Female
Humans United States Aged Cross-Sectional Studies Medicare Part C
1.00
Humans Yoga Low Back Pain Female Male

Classifications MeSH