A new microdeletion syndrome involving TBC1D24, ATP6V0C, and PDPK1 causes epilepsy, microcephaly, and developmental delay.
3-Phosphoinositide-Dependent Protein Kinases
/ genetics
Adolescent
Adult
Child
Child, Preschool
Chromosome Deletion
Chromosomes, Human, Pair 16
Cohort Studies
Developmental Disabilities
/ genetics
Epilepsy
/ genetics
Female
GTPase-Activating Proteins
Humans
Infant
Intellectual Disability
/ genetics
Male
Membrane Proteins
/ genetics
Microcephaly
/ genetics
Nerve Tissue Proteins
/ genetics
Syndrome
Vacuolar Proton-Translocating ATPases
/ genetics
Young Adult
16p13.3
Epilepsy
Microcephaly
Microdeletion
TBC1D24
Journal
Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831
Informations de publication
Date de publication:
05 2019
05 2019
Historique:
received:
05
06
2018
accepted:
17
08
2018
pubmed:
25
9
2018
medline:
4
9
2019
entrez:
25
9
2018
Statut:
ppublish
Résumé
Contiguous gene deletions are known to cause several neurodevelopmental syndromes, many of which are caused by recurrent events on chromosome 16. However, chromosomal microarray studies (CMA) still yield copy-number variants (CNVs) of unknown clinical significance. We sought to characterize eight individuals with overlapping 205-kb to 504-kb 16p13.3 microdeletions that are distinct from previously published deletion syndromes. Clinical information on the patients and bioinformatic scores for the deleted genes were analyzed. All individuals in our cohort displayed developmental delay, intellectual disability, and various forms of seizures. Six individuals were microcephalic and two had strabismus. The deletion was absent in all 13 parents who were available for testing. The area of overlap encompasses seven genes including TBC1D24, ATP6V0C, and PDPK1 (also known as PDK1). Bi-allelic TBC1D24 pathogenic variants are known to cause nonsyndromic deafness, epileptic disorders, or DOORS syndrome (deafness, onychodystrophy, osteodystrophy, mental retardation, seizures). Sanger sequencing of the nondeleted TBC1D24 allele did not yield any additional pathogenic variants. We propose that 16p13.3 microdeletions resulting in simultaneous haploinsufficiencies of TBC1D24, ATP6V0C, and PDPK1 cause a novel rare contiguous gene deletion syndrome of microcephaly, developmental delay, intellectual disability, and epilepsy.
Identifiants
pubmed: 30245510
doi: 10.1038/s41436-018-0290-3
pii: S1098-3600(21)01466-0
doi:
Substances chimiques
ATP6V0C protein, human
0
GTPase-Activating Proteins
0
Membrane Proteins
0
Nerve Tissue Proteins
0
TBC1D24 protein, human
0
3-Phosphoinositide-Dependent Protein Kinases
EC 2.7.11.1
PDPK1 protein, human
EC 2.7.11.1
Vacuolar Proton-Translocating ATPases
EC 3.6.1.-
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1058-1064Commentaires et corrections
Type : ErratumIn
Références
Campeau PM, Kasperaviciute D, Lu JT, et al. The genetic basis of DOORS syndrome: an exome-sequencing study. Lancet Neurol. 2014;13:44–58.
doi: 10.1016/S1474-4422(13)70265-5
Banuelos E, Ramsey K, Belnap N. et al. Case report: novel mutations in TBC1D24 are associated with autosomal dominant tonic-clonic and myoclonic epilepsy and recessive Parkinsonism, psychosis, and intellectual disability. F1000Res. 2017;6:553.
doi: 10.12688/f1000research.10588.1
Kent WJ, Sugnet CW, Furey TS, et al. The human genome browser at UCSC. Genome Res. 2002;12:996–1006.
doi: 10.1101/gr.229102
Huang N, Lee I, Marcotte EM, Hurles ME. Characterising and predicting haploinsufficiency in the human genome. PLoS Genet. 2010;6:e1001154.
doi: 10.1371/journal.pgen.1001154
Lek M, Karczewski KJ, Minikel EV, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285.
doi: 10.1038/nature19057
Quinodoz M, Royer-Bertrand B, Cisarova K, Di Gioia SA, Superti-Furga A, Rivolta C. DOMINO: using machine learning to predict genes associated with dominant disorders. Am J Hum Genet. 2017;101:623–629.
doi: 10.1016/j.ajhg.2017.09.001
Bartsch O, Rasi S, Delicado A, et al. Evidence for a new contiguous gene syndrome, the chromosome 16p13.3 deletion syndrome alias severe Rubinstein-Taybi syndrome. Hum Genet. 2006;120:179–186.
doi: 10.1007/s00439-006-0215-0
Nelson M, Quinonez S, Ackley T, Iyer RK, Innis JW. Multiple congenital anomalies and developmental delay in a boy associated with a de novo 16p13.3 deletion. Am J Med Genet A. 2011;155A:612–617.
doi: 10.1002/ajmg.a.33808
Ghebranious N, Giampietro PF, Wesbrook FP, Rezkalla SH. A novel microdeletion at 16p11. 2 harbors candidate genes for aortic valve development, seizure disorder, and mild mental retardation. Am J Med Genet A. 2007;143:1462–1471.
doi: 10.1002/ajmg.a.31837
Bijlsma E, Gijsbers A, Schuurs-Hoeijmakers J, et al. Extending the phenotype of recurrent rearrangements of 16p11. 2: deletions in mentally retarded patients without autism and in normal individuals. Eur J Med Genet. 2009;52:77–87.
doi: 10.1016/j.ejmg.2009.03.006
Cooper GM, Coe BP, Girirajan S, et al. A copy number variation morbidity map of developmental delay. Nat Genet. 2011;43:838.
doi: 10.1038/ng.909
Coe BP, Witherspoon K, Rosenfeld JA, et al. Refining analyses of copy number variation identifies specific genes associated with developmental delay. Nat Genet. 2014;46:1063.
doi: 10.1038/ng.3092
Männik K, Mägi R, Macé A, et al. Copy number variations and cognitive phenotypes in unselected populations. JAMA. 2015;313:2044–2054.
doi: 10.1001/jama.2015.4845
Vulto‐van Silfhout AT, Hehir‐Kwa JY, Bon BW, et al. Clinical significance of de novo and inherited copy‐number variation. Hum Mutat. 2013;34:1679–1687.
doi: 10.1002/humu.22442
Fitzgerald T, Gerety S, Jones W, et al. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519:223.
doi: 10.1038/nature14135
Fischer B, Lüthy K, Paesmans J, et al. Skywalker-TBC1D24 has a lipid-binding pocket mutated in epilepsy and required for synaptic function. Nat Struct Mol Biol. 2016;23:965.
doi: 10.1038/nsmb.3297
Mangieri LR, Mader BJ, Thomas CE, et al. ATP6V0C knockdown in neuroblastoma cells alters autophagy-lysosome pathway function and metabolism of proteins that accumulate in neurodegenerative disease. PLoS ONE. 2014;9:e93257.
doi: 10.1371/journal.pone.0093257
Chung AY, Kim MJ, Kim D, et al. Neuron‐specific expression of atp6v0c2 in zebrafish CNS. Dev Dyn. 2010;239:2501–2508.
doi: 10.1002/dvdy.22383
Gagliardi PA, di Blasio L, Primo L. PDK1: A signaling hub for cell migration and tumor invasion. Biochim Biophys Acta. 2015;1856:178–188.
pubmed: 26238471
di Blasio L, Gagliardi PA, Puliafito A, et al. PDK1 regulates focal adhesion disassembly by modulating endocytosis of αvβ3 integrin. J Cell Sci. 2015;128:863–877.
doi: 10.1242/jcs.149294
Lawlor MA, Mora A, Ashby PR, et al. Essential role of PDK1 in regulating cell size and development in mice. EMBO J. 2002;21:3728–3738.
doi: 10.1093/emboj/cdf387
Bayascas JR, Wullschleger S, Sakamoto K, et al. Mutation of the PDK1 PH domain inhibits protein kinase B/Akt, leading to small size and insulin resistance. Mol Cell Biol. 2008;28:3258–3272.
doi: 10.1128/MCB.02032-07
Zurashvili T, Cordón-Barris L, Ruiz-Babot G, et al. Interaction of PDK1 with phosphoinositides is essential for neuronal differentiation but dispensable for neuronal survival. Mol Cell Biol. 2013;33:1027–1040.
doi: 10.1128/MCB.01052-12
Bergfeld AK, Pearce OM, Diaz SL, Pham T, Varki A. Metabolism of vertebrate amino sugars with N-glycolyl groups: elucidating the intracellular fate of the non-human sialic acid N-glycolylneuraminic acid. J Biol Chem. 2012;287:28865–28881.
doi: 10.1074/jbc.M112.363549
Diaz SL, Padler-Karavani V, Ghaderi D, et al. Sensitive and specific detection of the non-human sialic acid N-glycolylneuraminic acid in human tissues and biotherapeutic products. PLoS ONE. 2009;4:e4241.
doi: 10.1371/journal.pone.0004241
Alvarez-Pérez MA, Narayanan S, Zeichner-David M, Carmona BR, Arzate H. Molecular cloning, expression and immunolocalization of a novel human cementum-derived protein (CP-23). Bone. 2006;38:409–419.
doi: 10.1016/j.bone.2005.09.009
Li W, Shen S, Wu S, Chen Z, Hu C, Yan R. Regulation of tumorigenesis and metastasis of hepatocellular carcinoma tumor endothelial cells by microRNA-3178 and underlying mechanism. Biochem Biophys Res Commun. 2015;464:881–887.
doi: 10.1016/j.bbrc.2015.07.057
Zara F, Gennaro E, Stabile M, et al. Mapping of a locus for a familial autosomal recessive idiopathic myoclonic epilepsy of infancy to chromosome 16p13. Am J Hum Genet. 2000;66:1552–1557.
doi: 10.1086/302876
Balestrini S, Milh M, Castiglioni C, et al. TBC1D24 genotype–phenotype correlation: epilepsies and other neurologic features. Neurology. 2016;87:77–85.
doi: 10.1212/WNL.0000000000002807
Hirtz D, Thurman D, Gwinn-Hardy K, Mohamed M, Chaudhuri A, Zalutsky R. How common are the “common” neurologic disorders? Neurology. 2007;68:326–337.
doi: 10.1212/01.wnl.0000252807.38124.a3
Falace A, Buhler E, Fadda M, et al. TBC1D24 regulates neuronal migration and maturation through modulation of the ARF6-dependent pathway. Proc Natl Acad Sci U S A. 2014;111:2337–2342.
doi: 10.1073/pnas.1316294111
Inoue H, Noumi T, Nagata M, Murakami H, Kanazawa H. Targeted disruption of the gene encoding the proteolipid subunit of mouse vacuolar H+-ATPase leads to early embryonic lethality. Biochim Biophys Acta. 1999;1413:130–138.
doi: 10.1016/S0005-2728(99)00096-1
Sun-Wada G-H, Murata Y, Yamamoto A, Kanazawa H, Wada Y, Futai M. Acidic endomembrane organelles are required for mouse postimplantation development. Dev Biol. 2000;228:315–325.
doi: 10.1006/dbio.2000.9963
Carvill GL, Weckhuysen S, McMahon JM, et al. GABRA1 and STXBP1: novel genetic causes of Dravet syndrome. Neurology. 2014;82:1245–1253.
doi: 10.1212/WNL.0000000000000291
Gilissen C, Hehir-Kwa JY, Thung DT, et al. Genome sequencing identifies major causes of severe intellectual disability. Nature. 2014;511:344.
doi: 10.1038/nature13394
Helbig KL, Hagman KDF, Shinde DN, et al. Diagnostic exome sequencing provides a molecular diagnosis for a significant proportion of patients with epilepsy. Genet Med. 2016;18:898.
doi: 10.1038/gim.2015.186
Bowling KM, Thompson ML, Amaral MD, et al. Genomic diagnosis for children with intellectual disability and/or developmental delay. Genome Med. 2017;9:43.
doi: 10.1186/s13073-017-0433-1
Hamdan FF, Myers CT, Cossette P, et al. High rate of recurrent de novo mutations in developmental and epileptic encephalopathies. Am J Hum Genet. 2017;101:664–685.
doi: 10.1016/j.ajhg.2017.09.008
Deciphering Developmental Disorders Study. Prevalence and architecture of de novo mutations in developmental disorders. Nature. 2017;542:433.
doi: 10.1038/nature21062