Remarkable variation of ribosomal DNA organization and copy number in gnetophytes, a distinct lineage of gymnosperms.

Gnetophytes chromosome evolution concerted evolution high-throughput sequencing intragenomic diversity pseudogenes rDNA organization

Journal

Annals of botany
ISSN: 1095-8290
Titre abrégé: Ann Bot
Pays: England
ID NLM: 0372347

Informations de publication

Date de publication:
20 05 2019
Historique:
received: 27 03 2018
accepted: 04 09 2018
pubmed: 29 9 2018
medline: 23 2 2020
entrez: 29 9 2018
Statut: ppublish

Résumé

Gnetophytes, comprising the genera Ephedra, Gnetum and Welwitschia, are an understudied, enigmatic lineage of gymnosperms with a controversial phylogenetic relationship to other seed plants. Here we examined the organization of ribosomal DNA (rDNA) across representative species. We applied high-throughput sequencing approaches to isolate and reconstruct rDNA units and to determine their intragenomic homogeneity. In addition, fluorescent in situ hybridization and Southern blot hybridization techniques were used to reveal the chromosome and genomic organization of rDNA. The 5S and 35S rRNA genes were separate (S-type) in Gnetum montanum, Gnetum gnemon and Welwitschia mirabilis and linked (L-type) in Ephedra altissima. There was considerable variability in 5S rDNA abundance, ranging from as few as ~4000 (W. mirabilis) to >100 000 (G. montanum) copies. A similar large variation was also observed in 5S rDNA locus numbers (two to 16 sites per diploid cell). 5S rRNA pseudogenes were interspersed between functional genes forming a single unit in E. altissima and G. montanum. Their copy number was comparable or even higher than that of functional 5S rRNA genes. In E. altissima internal transcribed spacers of 35S rDNA were long and intrinsically repetitive while in G. montanum and W. mirabilis they were short without the subrepeats. Gnetophytes are distinct from other gymnosperms and angiosperms as they display surprisingly large variability in rDNA organization and rDNA copy and locus numbers between genera, with no relationship between copy numbers and genome sizes apparent. Concerted evolution of 5S rDNA units seems to have led to the amplification of 5S pseudogenes in both G. montanum and E. altissima. Evolutionary patterns of rDNA show both gymnosperm and angiosperm features underlining the diversity of the group.

Identifiants

pubmed: 30265284
pii: 5108462
doi: 10.1093/aob/mcy172
pmc: PMC6526317
doi:

Substances chimiques

DNA, Ribosomal 0

Types de publication

Journal Article Research Support, Non-U.S. Gov't

Langues

eng

Sous-ensembles de citation

IM

Pagination

767-781

Commentaires et corrections

Type : CommentIn

Informations de copyright

© The Author(s) 2018. Published by Oxford University Press on behalf of the Annals of Botany Company.

Références

Ann Bot. 2006 May;97(5):715-22
pubmed: 16481361
New Phytol. 2012 May;194(3):629-46
pubmed: 22432525
Mol Phylogenet Evol. 2011 Nov;61(2):321-32
pubmed: 21757016
Mol Phylogenet Evol. 2014 Jun;75:24-40
pubmed: 24565948
Am J Bot. 2015 Nov;102(11):1753-6
pubmed: 26451037
Ann Bot. 2002 Apr;89(4):483-9
pubmed: 12096809
Nature. 2013 May 30;497(7451):579-84
pubmed: 23698360
Algorithms Mol Biol. 2011 Nov 24;6:26
pubmed: 22115189
G3 (Bethesda). 2015 Nov 03;6(1):29-40
pubmed: 26530424
Annu Rev Biochem. 1980;49:727-64
pubmed: 6996571
Genome Res. 2007 Dec;17(12):1888-97
pubmed: 17989256
Proc Natl Acad Sci U S A. 1999 Jun 22;96(13):7342-7
pubmed: 10377416
J Mol Evol. 2003 Dec;57(6):623-35
pubmed: 14745531
Mol Phylogenet Evol. 2005 Sep;36(3):581-97
pubmed: 16099382
Genome Biol Evol. 2017 May 1;9(5):1130-1147
pubmed: 28460034
Mol Phylogenet Evol. 2010 Apr;55(1):168-77
pubmed: 19945537
Mol Phylogenet Evol. 2001 Dec;21(3):449-67
pubmed: 11741386
Proc Natl Acad Sci U S A. 1980 Apr;77(4):2158-62
pubmed: 6929543
Bioinformatics. 2013 Mar 15;29(6):792-3
pubmed: 23376349
Genetics. 2007 Feb;175(2):477-85
pubmed: 17322354
Genetics. 2006 Oct;174(2):863-74
pubmed: 16951064
Plant Biol (Stuttg). 2008 Mar;10(2):256-67
pubmed: 18304200
Heredity (Edinb). 2013 Jul;111(1):23-33
pubmed: 23512008
Mol Biol Evol. 1999 Mar;16(3):311-20
pubmed: 10331258
Heredity (Edinb). 2012 Jun;108(6):640-6
pubmed: 22354111
Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W465-9
pubmed: 18424797
J Mol Evol. 2008 Aug;67(2):222-32
pubmed: 18663508
BMC Genomics. 2012 Dec 23;13:722
pubmed: 23259460
Chromosoma. 2016 Sep;125(4):683-99
pubmed: 26637996
Nat Rev Genet. 2017 Jul;18(7):411-424
pubmed: 28502977
J Genet. 2011 Aug;90(2):203-8
pubmed: 21869468
Mol Phylogenet Evol. 2005 Apr;35(1):165-85
pubmed: 15737589
Am J Bot. 2003 Jan;90(1):17-24
pubmed: 21659076
Plant J. 2014 Dec;80(5):823-33
pubmed: 25230921
Chromosome Res. 2000;8(6):527-41
pubmed: 11032322
PeerJ. 2015 Jan 06;3:e718
pubmed: 25653903
Plant J. 2017 Mar;89(5):1020-1030
pubmed: 27943584
Nucleic Acids Res. 1988 May 11;16(9):4155
pubmed: 3375077
Theor Appl Genet. 2002 Feb;104(2-3):505-512
pubmed: 12582725
BMC Bioinformatics. 2010 Jul 15;11:378
pubmed: 20633259
Gene. 1992 Mar 15;112(2):225-8
pubmed: 1348233
Mol Phylogenet Evol. 2005 Apr;35(1):48-59
pubmed: 15737581
Genome. 2003 Feb;46(1):48-50
pubmed: 12669795
Nat Plants. 2018 Feb;4(2):82-89
pubmed: 29379155
Genome. 2007 Feb;50(2):241-51
pubmed: 17546089
Mol Gen Genet. 1988 Oct;214(2):333-42
pubmed: 3237209
Proc Natl Acad Sci U S A. 2004 Nov 23;101(47):16571-6
pubmed: 15545612
Science. 2010 Feb 5;327(5966):693-6
pubmed: 20133573
Mol Biol Evol. 1992 Jan;9(1):125-37
pubmed: 1552835
Mol Phylogenet Evol. 2001 Nov;21(2):198-217
pubmed: 11697916
Mol Phylogenet Evol. 2006 Dec;41(3):579-93
pubmed: 16843685
PLoS One. 2014 Sep 15;9(9):e107679
pubmed: 25222863
Proc Natl Acad Sci U S A. 2014 Nov 11;111(45):E4859-68
pubmed: 25355905
Theor Appl Genet. 2005 Feb;110(4):730-41
pubmed: 15657739
Nature. 1982 Sep 9;299(5879):111-7
pubmed: 7110332
Theor Appl Genet. 1996 Mar;92(3-4):411-6
pubmed: 24166265
Chromosoma. 2009 Feb;118(1):85-97
pubmed: 18779974

Auteurs

Wencai Wang (W)

School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.

Tao Wan (T)

Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen and Chinese Academy of Sciences, Shenzen, PR China.
Sino-Africa Joint Research Center, Chinese Academy of Science, Wuhan, PR China.

Hannes Becher (H)

School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.

Alena Kuderova (A)

Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.

Ilia J Leitch (IJ)

Jodrell Laboratory, Royal Botanic Gardens, Kew, Richmond, UK.

Sònia Garcia (S)

Institut Botànic de Barcelona (IBB-CSIC-ICUB), Passeig del Migdia s/n, Parc de Montjuïc, Barcelona, Catalonia, Spain.

Andrew R Leitch (AR)

School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.

Aleš Kovařík (A)

Institute of Biophysics, Academy of Sciences of the Czech Republic, Brno, Czech Republic.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH