Loss of function of SVBP leads to autosomal recessive intellectual disability, microcephaly, ataxia, and hypotonia.
Angiogenic Proteins
Animals
Ataxia
/ epidemiology
Carrier Proteins
/ genetics
Cell Cycle Proteins
Female
Genes, Recessive
/ genetics
Genotype
HeLa Cells
High-Throughput Nucleotide Sequencing
Homozygote
Humans
Intellectual Disability
/ epidemiology
Loss of Function Mutation
/ genetics
Male
Microcephaly
/ epidemiology
Muscle Hypotonia
/ epidemiology
Pedigree
Rats
CCD23
NGS
VASH1
hippocampal neurons
intellectual disability
Journal
Genetics in medicine : official journal of the American College of Medical Genetics
ISSN: 1530-0366
Titre abrégé: Genet Med
Pays: United States
ID NLM: 9815831
Informations de publication
Date de publication:
08 2019
08 2019
Historique:
received:
18
05
2018
accepted:
07
12
2018
pubmed:
5
1
2019
medline:
7
2
2020
entrez:
5
1
2019
Statut:
ppublish
Résumé
Identifying and characterizing novel causes of autosomal recessive intellectual disability based on systematic clinical and genetic evaluation, followed by functional experiments. Clinical examinations, genome-wide positional mapping, and sequencing were followed by quantitative polymerase chain reaction and western blot of the protein SVBP and its interaction partners. We then knocked down the gene in rat primary hippocampal neurons and evaluated the consequences on synapses. We identified a founder, homozygous stop-gain variant in SVBP (c.82C>T; p.[Gln28*]) in four affected individuals from two independent families with intellectual disability, microcephaly, ataxia, and muscular hypotonia. SVBP encodes a small chaperone protein that transports and stabilizes two angiogenesis regulators, VASH1 and VASH2. The altered protein is unstable and nonfunctional since transfected HeLa cells with mutant SVBP did not reveal evidence for immunoreactive SVBP protein fragments and cotransfection with VASH1 showed a severe reduction of VASH1 in medium and cell lysate. Knocking down Svbp in rat primary hippocampal neurons led to a significant decrease in the number of excitatory synapses. SVBP is not only involved in angiogenesis, but also has vital functions in the central nervous system. Biallelic loss-of-function variants in SVBP lead to intellectual disability.
Identifiants
pubmed: 30607023
doi: 10.1038/s41436-018-0415-8
pii: S1098-3600(21)01620-8
doi:
Substances chimiques
Angiogenic Proteins
0
Carrier Proteins
0
Cell Cycle Proteins
0
SVBP protein, human
0
VASH1 protein, human
0
VASH2 protein, human
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
1790-1796Références
Willemsen MH, Kleefstra T. Making headway with genetic diagnostics of intellectual disabilities. Clin Genet. 2014;85:101–110.
doi: 10.1111/cge.12244
Musante L, Ropers HH. Genetics of recessive cognitive disorders. Trends Genet. 2014;30:32–39.
doi: 10.1016/j.tig.2013.09.008
Vissers LE, Gilissen C, Veltman JA. Genetic studies in intellectual disability and related disorders. Nat Rev Genet. 2016;17:9–18.
doi: 10.1038/nrg3999
de Ligt J, Willemsen MH, van Bon BWM, Kleefstra T, Yntema HG, Kroes T. et al. Diagnostic exome sequencing in persons with severe intellectual disability. N Engl J Med. 2012;367:1921–1929.
doi: 10.1056/NEJMoa1206524
Rauch A, Wieczorek D, Graf E, Wieland T, Endele S, Schwarzmayr T, et al. Range of genetic mutations associated with severe non-syndromic sporadic intellectual disability: an exome sequencing study. Lancet. 2012;380:1674–1682.
doi: 10.1016/S0140-6736(12)61480-9
Deciphering Developmental Disorders Study. Large-scale discovery of novel genetic causes of developmental disorders. Nature. 2015;519:223–228.
doi: 10.1038/nature14135
Najmabadi H, Hu H, Garshasbi M, Zemojtel T, Abedini SS, Chen W, et al. Deep sequencing reveals 50 novel genes for recessive cognitive disorders. Nature. 2011;478:57–63.
doi: 10.1038/nature10423
Riazuddin S, Hussain M, Razzaq A, Iqbal Z, Shahzad M, Polla DL, et al. Exome sequencing of Pakistani consanguineous families identifies 30 novel candidate genes for recessive intellectual disability. Mol Psychiatry. 2017;22:1604–1614.
doi: 10.1038/mp.2016.109
Anazi S, Maddirevula S, Faqeih E, Alsedairy H, Alzahrani F, Shamseldin HE, et al. Clinical genomics expands the morbid genome of intellectual disability and offers a high diagnostic yield. Mol Psychiatry. 2017;22:615–624.
doi: 10.1038/mp.2016.113
Reuter MS, Tawamie H, Buchert R, Hosny Gebril O, Froukh T, Thiel C, et al. Diagnostic yield and novel candidate genes by exome sequencing in 152 consanguineous families with neurodevelopmental disorders. JAMA Psychiatry. 2017;74:293–299.
doi: 10.1001/jamapsychiatry.2016.3798
Trujillano D, Bertoli-Avella AM, Kumar Kandaswamy K, Weiss ME, Köster J, Marais A, et al. Clinical exome sequencing: results from 2819 samples reflecting 1000 families. Eur J Hum Genet. 2017;25:176–182.
doi: 10.1038/ejhg.2016.146
Kochinke K, Zweier C, Nijhof B, Fenckova M, Cizek P, Honti F, et al. Systematic phenomics analysis deconvolutes genes mutated in intellectual disability into biologically coherent modules. Am J Hum Genet. 2016;98:149–164.
doi: 10.1016/j.ajhg.2015.11.024
Iqbal Z, van Bokhoven H. Identifying genes responsible for intellectual disability in consanguineous families. Hum Hered. 2014;77:150–160.
doi: 10.1159/000360539
McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–1303.
doi: 10.1101/gr.107524.110
Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.
doi: 10.1093/nar/gkq603
Riecken LB, Tawamie H, Dornblut C, Buchert R, Ismayel A, Schulz A, et al. Inhibition of RAS activation due to a homozygous ezrin variant in patients with profound intellectual disability. Hum Mutat. 2015;36:270–278.
doi: 10.1002/humu.22737
Hoischen A, Gilissen C, Arts P, Wieskamp N, van der Vliet W, Vermeer S, et al. Massively parallel sequencing of ataxia genes after array-based enrichment. Hum Mutat. 2010;31:494–499.
doi: 10.1002/humu.21221
Vissers LE, de Ligt J, Gilissen C, Janssen I, Steehouwer M, de Vries P . et al. A de novo paradigm for mental retardation. Nat Genet. 2010;42:1109–1112.
doi: 10.1038/ng.712
Suzuki Y, Kobayashi M, Miyashita H, Ohta H, Sonoda H, Sato Y. Isolation of a small vasohibin-binding protein (SVBP) and its role in vasohibin secretion. J Cell Sci. 2010;123 pt 18:3094–3101.
doi: 10.1242/jcs.067538
Nadif Kasri N, Nakano-Kobayashi A, Malinow R, Li B, van Aelst L. The Rho-linked mental retardation protein oligophrenin-1 controls synapse maturation and plasticity by stabilizing AMPA receptors. Genes Dev. 2009;23:1289–1302.
doi: 10.1101/gad.1783809
McDonnell AV, Jiang T, Keating AE, Berger B. Paircoil2: Improved prediction of coiled coils from sequence. Bioinformatics. 2006;22:356–358.
doi: 10.1093/bioinformatics/bti797
Xue X, Gao W, Sun B, Xu Y, Han B, Wang F, et al. Vasohibin 2 is transcriptionally activated and promotes angiogenesis in hepatocellular carcinoma. Oncogene. 2013;32:1724–1734.
doi: 10.1038/onc.2012.177
Kadonosono T, Yimchuen W, Tsubaki T, Shiozawa T, Suzuki Y, Kuchimaru T, et al. Domain architecture of vasohibins required for their chaperone-dependent unconventional extracellular release. Protein Sci. 2017;26:452–463.
doi: 10.1002/pro.3089
Nieuwenhuis J, Adamopoulos A, Bleijerveld OB, Mazouzi A, Stickel E, Celie P, et al. Vasohibins encode tubulin detyrosinating activity. Science. 2017;358:1453–1456.
doi: 10.1126/science.aao5676
Aillaud C, Bosc C, Peris L, Bosson A, Heemeryck P, van Dijk J, et al. Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science. 2017;358:1448–1453.
doi: 10.1126/science.aao4165
Nelson SB, Valakh V. Excitatory/inhibitory balance and circuit homeostasis in autism spectrum disorders. Neuron. 2015;87:684–698.
doi: 10.1016/j.neuron.2015.07.033
Tatti R, Haley MS, Swanson OK, Tselha T, Maffei A. Neurophysiology and regulation of the balance between excitation and inhibition in neocortical circuits. Biol Psychiatry. 2017;81:821–831.
doi: 10.1016/j.biopsych.2016.09.017