Specialized lysophosphatidic acid acyltransferases contribute to unusual fatty acid accumulation in exotic Euphorbiaceae seed oils.
Diacylglycerol acyltransferase
Eleostearic acid
Lysophosphatidic acid acyltransferase
Ricinoleic acid
Triacylglycerol
Journal
Planta
ISSN: 1432-2048
Titre abrégé: Planta
Pays: Germany
ID NLM: 1250576
Informations de publication
Date de publication:
May 2019
May 2019
Historique:
received:
14
09
2018
accepted:
29
12
2018
pubmed:
6
1
2019
medline:
14
5
2019
entrez:
6
1
2019
Statut:
ppublish
Résumé
In vivo and in vitro analyses of Euphorbiaceae species' triacylglycerol assembly enzymes substrate selectivity are consistent with the co-evolution of seed-specific unusual fatty acid production and suggest that many of these genes will be useful for biotechnological production of designer oils. Many exotic Euphorbiaceae species, including tung tree (Vernicia fordii), castor bean (Ricinus communis), Bernardia pulchella, and Euphorbia lagascae, accumulate unusual fatty acids in their seed oils, many of which have valuable properties for the chemical industry. However, various adverse plant characteristics including low seed yields, production of toxic compounds, limited growth range, and poor resistance to abiotic stresses have limited full agronomic exploitation of these plants. Biotechnological production of these unusual fatty acids (UFA) in high yielding non-food oil crops would provide new robust sources for these valuable bio-chemicals. Previous research has shown that expression of the primary UFA biosynthetic gene alone is not enough for high-level accumulation in transgenic seed oils; other genes must be included to drive selective UFA incorporation into oils. Here, we use a series of in planta molecular genetic studies and in vitro biochemical measurements to demonstrate that lysophosphatidic acid acyltransferases from two Euphorbiaceae species have high selectivity for incorporation of their respective unusual fatty acids into the phosphatidic acid intermediate of oil biosynthesis. These results are consistent with the hypothesis that unusual fatty acid accumulation arose in part via co-evolution of multiple oil biosynthesis and assembly enzymes that cooperate to enhance selective fatty acid incorporation into seed oils over that of the common fatty acids found in membrane lipids.
Identifiants
pubmed: 30610363
doi: 10.1007/s00425-018-03086-y
pii: 10.1007/s00425-018-03086-y
doi:
Substances chimiques
Fatty Acids
0
Plant Oils
0
Ricinoleic Acids
0
Acyltransferases
EC 2.3.-
2-acylglycerophosphate acyltransferase
EC 2.3.1.52
ricinoleic acid
I2D0F69854
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
1285-1299Subventions
Organisme : Directorate for Biological Sciences
ID : 1613923
Organisme : Agricultural Research Service
ID : 6054-41000-102-00D
Références
Front Plant Sci. 2012 Jul 02;3:147
pubmed: 22783267
Plant Physiol Biochem. 1999 Nov;37(11):831-840
pubmed: 10580283
Plant Biotechnol J. 2008 Oct;6(8):819-31
pubmed: 18643899
Plant Physiol. 2012 Nov;160(3):1530-9
pubmed: 22932756
Plant Cell. 2006 Sep;18(9):2294-313
pubmed: 16920778
Biochim Biophys Acta. 2016 Sep;1861(9 Pt B):1214-1225
pubmed: 27003249
Int J Mol Sci. 2016 Apr 06;17(4):507
pubmed: 27058535
Plant J. 2018 Oct;96(2):287-299
pubmed: 30003607
Plant J. 1999 Sep;19(6):645-53
pubmed: 10571850
Planta. 2003 Jul;217(3):507-16
pubmed: 14520576
FEBS Lett. 2008 Jan 23;582(2):305-9
pubmed: 18154737
Mol Phylogenet Evol. 2016 Mar;96:55-69
pubmed: 26721558
J Biol Chem. 2013 Dec 27;288(52):36902-14
pubmed: 24189065
Phytochemistry. 2006 Dec;67(23):2541-9
pubmed: 17084870
Plant J. 1998 Dec;16(6):735-43
pubmed: 10069079
Biochem J. 1991 Dec 1;280 ( Pt 2):507-14
pubmed: 1747126
Plant Sci. 2013 Apr;203-204:79-88
pubmed: 23415331
Plant Physiol. 1995 May;108(1):399-409
pubmed: 7784510
Trends Plant Sci. 2000 Mar;5(3):95-101
pubmed: 10707074
J Lipid Res. 1981 Jul;22(5):877-9
pubmed: 7288294
Anal Biochem. 1978 Oct 1;90(1):420-6
pubmed: 727482
Plant J. 2006 Mar;45(5):847-56
pubmed: 16460516
Plant Physiol. 2002 Dec;130(4):2027-38
pubmed: 12481086
Plant Physiol. 2016 May;171(1):179-91
pubmed: 27208047
F1000Res. 2013 Oct 04;2:203
pubmed: 24555099
Plant Physiol. 2010 Feb;152(2):670-84
pubmed: 19965969
J Exp Bot. 2018 Aug 14;69(18):4395-4402
pubmed: 29982623
Plant Physiol. 1999 Jul;120(3):739-46
pubmed: 10398708
Plant Cell. 2005 Apr;17(4):1073-89
pubmed: 15772283
Plant Physiol. 2017 Jun;174(2):986-998
pubmed: 28408542
Plant Physiol. 2011 Feb;155(2):683-93
pubmed: 21173026
Plant J. 2015 Dec;84(5):1021-33
pubmed: 26505880
J Chromatogr B Analyt Technol Biomed Life Sci. 2018 Dec 1;1102-1103:52-59
pubmed: 30368043
Plant J. 2006 Dec;48(6):920-32
pubmed: 17227547
Fed Proc. 1961 Dec;20:934-40
pubmed: 14455159
Plant Sci. 2013 Feb;199-200:29-40
pubmed: 23265316
Proc Natl Acad Sci U S A. 2014 Jan 21;111(3):1204-9
pubmed: 24398521
Phytochemistry. 2006 May;67(9):904-15
pubmed: 16600316
Plant Physiol. 2015 May;168(1):36-46
pubmed: 25739701
Proc Natl Acad Sci U S A. 2000 Jun 6;97(12):6487-92
pubmed: 10829075
Plant Direct. 2018 Jun 26;2(6):e00067
pubmed: 31245729
Plant Mol Biol. 2015 Sep;89(1-2):113-26
pubmed: 26254605
Plant Physiol. 1999 Jul;120(3):913-22
pubmed: 10398728
Plant Cell. 1997 Jun;9(6):909-23
pubmed: 9212466
Plant Physiol. 2017 May;174(1):97-109
pubmed: 28325847
Plant J. 2011 Nov;68(3):387-99
pubmed: 21711402
J Biol Chem. 1960 Aug;235:2233-7
pubmed: 14413818
Proc Natl Acad Sci U S A. 1995 Jul 18;92(15):6743-7
pubmed: 7624314
Plant Physiol. 2012 Apr;158(4):1944-54
pubmed: 22371508