Gene duplication and relaxation from selective constraints of GCYC genes correlated with various floral symmetry patterns in Asiatic Gesneriaceae tribe Trichosporeae.
Amino Acid Sequence
Evolution, Molecular
Flowers
/ anatomy & histology
Gene Duplication
Gene Expression Profiling
/ methods
Gene Expression Regulation, Plant
Genes, Plant
/ genetics
Genetic Variation
Magnoliopsida
/ classification
Phylogeny
Plant Proteins
/ classification
Selection, Genetic
Sequence Homology, Amino Acid
Transcription Factors
/ genetics
Journal
PloS one
ISSN: 1932-6203
Titre abrégé: PLoS One
Pays: United States
ID NLM: 101285081
Informations de publication
Date de publication:
2019
2019
Historique:
received:
26
10
2017
accepted:
17
12
2018
entrez:
31
1
2019
pubmed:
31
1
2019
medline:
1
10
2019
Statut:
epublish
Résumé
Floral bilateral symmetry is one of the most important acquisitions in flower shape evolution in angiosperms. Members of Gesneriaceae possess predominantly zygomorphic flowers yet natural reversal to actinomorphy have independently evolved multiple times. The development of floral bilateral symmetry relies greatly on the gene CYCLOIDEA (CYC). Our reconstructed GCYC phylogeny indicated at least five GCYC duplication events occurred over the evolutionary history of Gesneriaceae. However, the patterns of GCYC expression following the duplications and the role of natural selection on GCYC copies in relation to floral symmetry remained largely unstudied. The Asiatic tribe Trichosporeae contains most reversals to actinomorphy. We thus investigated shifts in GCYC gene expression among selected zygomorphic species (Hemiboea bicornuta and Lysionotus pauciflorus) and species with reversals to actinomorphy (Conandron ramondioides) by RT-PCR. In the actinomorphic C. ramondioides, none of the three copies of GCYC was found expressed in petals implying that the reversal was a loss-of-function event. On the other hand, both zygomorphic species retained one GCYC1 copy that was expressed in the dorsal petals but each species utilized a different copy (GCYC1C for H. bicornuta and GCYC1D for L. pauciflorus). Together with previously published data, it appeared that GCYC1C and GCYC1D copies diversified their expression in a distinct species-specific pattern. To detect whether the selection signal (ω) changed before and after the duplication of GCYC1 in Asiatic Trichosporeae, we reconstructed a GCYC phylogeny using maximum likelihood and Bayesian inference algorithms and examined selection signals using PAML. The PAML analysis detected relaxation from selection right after the GCYC1 duplication (ωpre-duplication = 0.2819, ωpost-duplication = 0.3985) among Asiatic Trichosporeae species. We propose that the selection relaxation after the GCYC1 duplication created an "evolutionary window of flexibility" in which multiple copies were retained with randomly diverged roles for dorsal-specific expressions in association with floral symmetry changes.
Identifiants
pubmed: 30699126
doi: 10.1371/journal.pone.0210054
pii: PONE-D-17-38198
pmc: PMC6353098
doi:
Substances chimiques
Plant Proteins
0
Transcription Factors
0
Types de publication
Journal Article
Research Support, Non-U.S. Gov't
Langues
eng
Sous-ensembles de citation
IM
Pagination
e0210054Déclaration de conflit d'intérêts
The authors have declared that no competing interests exist.
Références
Ann Bot. 2011 Jun;107(9):1521-32
pubmed: 21478175
Nat Methods. 2012 Jul 30;9(8):772
pubmed: 22847109
Proc Natl Acad Sci U S A. 2011 Feb 8;108(6):2343-8
pubmed: 21282634
Genetics. 1999 Apr;151(4):1531-45
pubmed: 10101175
BMC Plant Biol. 2014 Jun 06;14:157
pubmed: 24903607
J Comput Biol. 2001;8(3):221-34
pubmed: 11535174
Mol Biol Evol. 2013 Dec;30(12):2725-9
pubmed: 24132122
Sci Rep. 2017 Mar 24;7:44948
pubmed: 28337996
Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5068-73
pubmed: 15790677
Syst Biol. 2006 Aug;55(4):539-52
pubmed: 16785212
BMC Evol Biol. 2009 Oct 07;9:244
pubmed: 19811633
Genetics. 1998 Mar;148(3):929-36
pubmed: 9539414
J Exp Zool. 2001 Aug 15;291(2):105-15
pubmed: 11479912
BMC Evol Biol. 2010 Nov 12;10:352
pubmed: 21073690
Mol Biol Evol. 2008 Jul;25(7):1260-73
pubmed: 18390478
Front Plant Sci. 2013 Aug 20;4:302
pubmed: 23970887
Philos Trans R Soc Lond B Biol Sci. 2014 Aug 5;369(1648):
pubmed: 24958922
Proc Natl Acad Sci U S A. 2006 Jun 13;103(24):9101-6
pubmed: 16754863
Proc Natl Acad Sci U S A. 2003 Dec 9;100(25):14603-6
pubmed: 14638945
Trends Ecol Evol. 1997 Mar;12(3):85-6
pubmed: 21237985
Am J Bot. 2011 Feb;98(2):227-43
pubmed: 21613112
Genetics. 1988 Nov;120(3):841-7
pubmed: 3224809
New Phytol. 2015 Jan;205(2):852-68
pubmed: 25329857
Proc Natl Acad Sci U S A. 1988 May;85(10):3509-12
pubmed: 3368461
Mol Biol Evol. 2004 Feb;21(2):321-31
pubmed: 14660696
Mol Biol Evol. 2007 Aug;24(8):1586-91
pubmed: 17483113
J Exp Bot. 2013 Dec;64(18):5673-85
pubmed: 24129704
Dev Genes Evol. 2008 Jul;218(7):341-51
pubmed: 18592267
PLoS One. 2014 Apr 21;9(4):e95727
pubmed: 24752428
New Phytol. 2008;178(3):532-43
pubmed: 18312540
J Mol Evol. 2004 Jul;59(1):121-32
pubmed: 15383915
PLoS One. 2012;7(4):e36033
pubmed: 22558314
Genetics. 2005 Apr;169(4):2209-23
pubmed: 15687268
Int J Plant Sci. 1999 Nov;160(S6):S3-S23
pubmed: 10572019
Syst Biol. 2012 May;61(3):539-42
pubmed: 22357727
Trends Plant Sci. 2009 Mar;14(3):147-54
pubmed: 19231272
Am J Bot. 2009 May;96(5):989-1010
pubmed: 21628251
Development. 1997 Apr;124(7):1387-92
pubmed: 9118809
Nature. 1996 Oct 31;383(6603):794-9
pubmed: 8893002
Mol Biol Evol. 2005 Dec;22(12):2472-9
pubmed: 16107592
Mol Biol Evol. 2013 Jul;30(7):1713-9
pubmed: 23589455
Mol Biol Evol. 2012 May;29(5):1297-300
pubmed: 22319160
Bot Stud. 2018 Oct 29;59(1):24
pubmed: 30374786
Front Plant Sci. 2017 Apr 25;8:589
pubmed: 28487706
Mol Phylogenet Evol. 2004 May;31(2):765-79
pubmed: 15062809
Mol Biol Evol. 2003 Apr;20(4):591-600
pubmed: 12679544
Nucleic Acids Res. 2004 Mar 19;32(5):1792-7
pubmed: 15034147
Syst Biol. 2010 May;59(3):307-21
pubmed: 20525638
Front Plant Sci. 2018 Aug 15;9:1008
pubmed: 30158940
Development. 2007 Jul;134(14):2549-60
pubmed: 17553908