The plastid and mitochondrial genomes of Eucalyptus grandis.
Chloroplast
Eucalyptus grandis
Mitochondria
Organelle genome
Plastid
Journal
BMC genomics
ISSN: 1471-2164
Titre abrégé: BMC Genomics
Pays: England
ID NLM: 100965258
Informations de publication
Date de publication:
13 Feb 2019
13 Feb 2019
Historique:
received:
03
08
2018
accepted:
10
01
2019
entrez:
15
2
2019
pubmed:
15
2
2019
medline:
14
6
2019
Statut:
epublish
Résumé
Land plant organellar genomes have significant impact on metabolism and adaptation, and as such, accurate assembly and annotation of plant organellar genomes is an important tool in understanding the evolutionary history and interactions between these genomes. Intracellular DNA transfer is ongoing between the nuclear and organellar genomes, and can lead to significant genomic variation between, and within, species that impacts downstream analysis of genomes and transcriptomes. In order to facilitate further studies of cytonuclear interactions in Eucalyptus, we report an updated annotation of the E. grandis plastid genome, and the second sequenced and annotated mitochondrial genome of the Myrtales, that of E. grandis. The 478,813 bp mitochondrial genome shows the conserved protein coding regions and gene order rearrangements typical of land plants. There have been widespread insertions of organellar DNA into the E. grandis nuclear genome, which span 141 annotated nuclear genes. Further, we identify predicted editing sites to allow for the discrimination of RNA-sequencing reads between nuclear and organellar gene copies, finding that nuclear copies of organellar genes are not expressed in E. grandis. The implications of organellar DNA transfer to the nucleus are often ignored, despite the insight they can give into the ongoing evolution of plant genomes, and the problems they can cause in many applications of genomics. Future comparisons of the transcription and regulation of organellar genes between Eucalyptus genotypes may provide insight to the cytonuclear interactions that impact economically important traits in this widely grown lignocellulosic crop species.
Sections du résumé
BACKGROUND
BACKGROUND
Land plant organellar genomes have significant impact on metabolism and adaptation, and as such, accurate assembly and annotation of plant organellar genomes is an important tool in understanding the evolutionary history and interactions between these genomes. Intracellular DNA transfer is ongoing between the nuclear and organellar genomes, and can lead to significant genomic variation between, and within, species that impacts downstream analysis of genomes and transcriptomes.
RESULTS
RESULTS
In order to facilitate further studies of cytonuclear interactions in Eucalyptus, we report an updated annotation of the E. grandis plastid genome, and the second sequenced and annotated mitochondrial genome of the Myrtales, that of E. grandis. The 478,813 bp mitochondrial genome shows the conserved protein coding regions and gene order rearrangements typical of land plants. There have been widespread insertions of organellar DNA into the E. grandis nuclear genome, which span 141 annotated nuclear genes. Further, we identify predicted editing sites to allow for the discrimination of RNA-sequencing reads between nuclear and organellar gene copies, finding that nuclear copies of organellar genes are not expressed in E. grandis.
CONCLUSIONS
CONCLUSIONS
The implications of organellar DNA transfer to the nucleus are often ignored, despite the insight they can give into the ongoing evolution of plant genomes, and the problems they can cause in many applications of genomics. Future comparisons of the transcription and regulation of organellar genes between Eucalyptus genotypes may provide insight to the cytonuclear interactions that impact economically important traits in this widely grown lignocellulosic crop species.
Identifiants
pubmed: 30760198
doi: 10.1186/s12864-019-5444-4
pii: 10.1186/s12864-019-5444-4
pmc: PMC6373115
doi:
Types de publication
Journal Article
Langues
eng
Sous-ensembles de citation
IM
Pagination
132Subventions
Organisme : National Research Foundation
ID : 97911
Organisme : Department of Science and Technology, Republic of South Africa
ID : 86936
Références
Mol Phylogenet Evol. 2013 Dec;69(3):704-16
pubmed: 23876290
Annu Rev Plant Biol. 2017 Apr 28;68:225-252
pubmed: 28226235
Mol Ecol. 2014 Oct;23(20):4899-911
pubmed: 25223488
Plant Cell. 2008 Apr;20(4):856-74
pubmed: 18441214
Plant Physiol. 2016 May;171(1):452-67
pubmed: 26966169
Mol Cell Biol. 2001 Feb;21(3):731-42
pubmed: 11154261
Sci Rep. 2016 Aug 17;6:31533
pubmed: 27530092
Bioinformatics. 2012 Jun 15;28(12):1647-9
pubmed: 22543367
Curr Protoc Bioinformatics. 2009 Mar;Chapter 4:4.10.1-4.10.14
pubmed: 19274634
PeerJ. 2017 Mar 29;5:e3148
pubmed: 28367378
Trends Plant Sci. 2007 Sep;12(9):391-6
pubmed: 17698402
BMC Genomics. 2014 May 28;15:405
pubmed: 24884625
PLoS One. 2013 Aug 05;8(8):e69476
pubmed: 23940520
DNA Res. 2005;12(3):215-20
pubmed: 16303753
Nucleic Acids Res. 2010 Aug;38(14):4755-67
pubmed: 20385587
Nucleic Acids Res. 2013 Jul;41(Web Server issue):W575-81
pubmed: 23609545
Trends Genet. 2009 Jun;25(6):253-61
pubmed: 19481287
Bioinform Biol Insights. 2013;7:1-19
pubmed: 23362369
Syst Biol. 2017 May 01;66(3):320-337
pubmed: 27637567
Bioinformatics. 2010 Aug 1;26(15):1895-6
pubmed: 20639544
Curr Protoc Bioinformatics. 2015 Mar 09;49:12.12.1-12.12.15
pubmed: 25754992
PLoS One. 2010 Jun 25;5(6):e11147
pubmed: 20593022
Plant Mol Biol. 1994 Mar;24(5):811-8
pubmed: 8193306
Plant Physiol. 2009 Aug;150(4):2030-44
pubmed: 19493969
Plant Cell. 2009 Dec;21(12):3718-31
pubmed: 20040540
J Exp Bot. 2010 Mar;61(3):657-71
pubmed: 19995826
Nucleic Acids Res. 2017 Feb 28;45(4):e18
pubmed: 28204566
Genetics. 2016 Dec;204(4):1507-1522
pubmed: 27707788
New Phytol. 2015 Oct;208(2):570-83
pubmed: 25989702
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W253-9
pubmed: 19433507
Plant Cell. 2013 Jun;25(6):1929-45
pubmed: 23749847
Heredity (Edinb). 2013 Oct;111(4):314-20
pubmed: 23715017
Biochem Soc Trans. 2016 Oct 15;44(5):1475-1482
pubmed: 27911729
BMC Genomics. 2010 Dec 01;11:681
pubmed: 21122097
Biomed Res Int. 2016;2016:5040598
pubmed: 27847816
BMC Genomics. 2011 Mar 04;12:137
pubmed: 21375742
Genome Res. 2009 Sep;19(9):1639-45
pubmed: 19541911
Brief Funct Genomics. 2013 Sep;12(5):454-6
pubmed: 23334532
Plant J. 2010 Sep;63(5):728-38
pubmed: 20553420
EMBO J. 1992 Mar;11(3):1099-103
pubmed: 1547774
Trends Biochem Sci. 1999 May;24(5):199-202
pubmed: 10322436
J Evol Biol. 2014 Oct;27(10):2021-34
pubmed: 25196503
Mol Gen Genet. 1993 Aug;240(2):238-44
pubmed: 8355656
Bioinformatics. 2004 Nov 22;20(17):3252-5
pubmed: 15180927
Biochimie. 2014 May;100:107-20
pubmed: 24075874
Virology. 1998 Jun 20;246(1):158-69
pubmed: 9657003
Nucleic Acids Res. 2013 Jan;41(Database issue):D36-42
pubmed: 23193287
Nat Methods. 2012 Mar 04;9(4):357-9
pubmed: 22388286
Annu Rev Genet. 2013;47:335-52
pubmed: 24274753
J Integr Bioinform. 2015 Sep 03;12(1):257
pubmed: 26527191
Mitochondrion. 2008 Jan;8(1):5-14
pubmed: 18065297
Science. 2006 Sep 15;313(5793):1596-604
pubmed: 16973872
Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6285-90
pubmed: 9177209
Annu Rev Plant Biol. 2015;66:211-41
pubmed: 25494465
Curr Protoc Bioinformatics. 2014 Sep 08;47:11.12.1-34
pubmed: 25199790
Genome Biol Evol. 2013;5(12):2318-29
pubmed: 24259312
Proc Natl Acad Sci U S A. 2016 Mar 29;113(13):3687-92
pubmed: 26979961
PLoS Biol. 2012 Jan;10(1):e1001241
pubmed: 22272183
Genes (Basel). 2016 Dec 23;8(1):
pubmed: 28025543
New Phytol. 2013 Dec;200(4):978-85
pubmed: 24712049
Mol Biol Evol. 2010 Jun;27(6):1436-48
pubmed: 20118192
Plant Signal Behav. 2011 May;6(5):635-9
pubmed: 21499027
Plant Cell. 2006 Oct;18(10):2650-63
pubmed: 17041147
Methods Mol Biol. 2016;1418:283-334
pubmed: 27008021
Nucleic Acids Res. 2013 Jul;41(13):e129
pubmed: 23661685
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
BMC Genomics. 2012 Dec 20;13:715
pubmed: 23256920
Nature. 2014 Jun 19;510(7505):356-62
pubmed: 24919147
Mol Phylogenet Evol. 2016 Feb;95:116-36
pubmed: 26585030
J Mol Biol. 1990 Oct 5;215(3):403-10
pubmed: 2231712
Annu Rev Plant Biol. 2009;60:115-38
pubmed: 19014347
Proc Natl Acad Sci U S A. 1988 Jan;85(2):372-6
pubmed: 3422433
Plant Mol Biol. 2013 Jul;82(4-5):375-92
pubmed: 23645360
Genome Biol Evol. 2015 Dec 08;8(1):29-41
pubmed: 26645680
Brief Bioinform. 2013 Mar;14(2):178-92
pubmed: 22517427
Funct Integr Genomics. 2016 Mar;16(2):171-82
pubmed: 26860316
New Phytol. 2015 Jun;206(4):1406-22
pubmed: 25353719
Nucleic Acids Res. 2018 Jan 4;46(D1):D41-D47
pubmed: 29140468