Genomic epidemiology of erythromycin-resistant Bordetella pertussis in China.
Anti-Bacterial Agents
/ pharmacology
Bordetella pertussis
/ classification
China
Cluster Analysis
DNA, Bacterial
/ chemistry
DNA, Ribosomal
/ chemistry
Drug Resistance, Bacterial
Drug Utilization
Erythromycin
/ pharmacology
Genetic Variation
Genotype
Humans
Microbial Sensitivity Tests
Minisatellite Repeats
Molecular Epidemiology
Molecular Typing
Pertussis Vaccine
/ administration & dosage
Phylogeny
Point Mutation
RNA, Ribosomal, 23S
/ genetics
Selection, Genetic
Sequence Analysis, DNA
Whole Genome Sequencing
Whooping Cough
/ epidemiology
None
erythromycin-resistant
genomic epidemiology
Journal
Emerging microbes & infections
ISSN: 2222-1751
Titre abrégé: Emerg Microbes Infect
Pays: United States
ID NLM: 101594885
Informations de publication
Date de publication:
2019
2019
Historique:
entrez:
23
3
2019
pubmed:
23
3
2019
medline:
7
8
2019
Statut:
ppublish
Résumé
Macrolides such as erythromycin are the empirical treatment of Bordetella pertussis infections. China has experienced an increase in erythromycin-resistant B. pertussis isolates since they were first reported in 2013. Here, we undertook a genomic study on Chinese B. pertussis isolates from 2012 to 2015 to elucidate the origins and phylogenetic relationships of erythromycin-resistant B. pertussis isolates in China. A total of 167 Chinese B. pertussis isolates were used for antibiotic sensitivity testing and multiple locus variable-number tandem repeat (VNTR) analysis (MLVA). All except four isolates were erythromycin-resistant and of the four erythromycin-sensitive isolates, three were non-ptxP1. MLVA types (MT), MT55, MT104 and MT195 were the predominant types. Fifty of those isolates were used for whole genome sequencing and phylogenetic analysis. Genome sequencing and phylogenetic analysis revealed three independent erythromycin-resistant lineages and all resistant isolates carried a mutation in the 23S rRNA gene. A novel fhaB3 allele was found uniquely in Chinese ptxP1 isolates and these Chinese ptxP1-ptxA1-fhaB3 had a 5-fold higher mutation rate than the global ptxP1-ptxA1 B. pertussis population. Our results suggest that the evolution of Chinese B. pertussis is likely to be driven by selection pressure from both vaccination and antibiotics. The emergence of the new non-vaccine fhaB3 allele in Chinese B. pertussis population may be a result of selection from vaccination, whereas the expansion of ptxP1-fhaB3 lineages was most likely to be the result of selection pressure from antibiotics. Further monitoring of B. pertussis in China is required to better understand the evolution of the pathogen.
Identifiants
pubmed: 30898080
doi: 10.1080/22221751.2019.1587315
pmc: PMC6455148
doi:
Substances chimiques
Anti-Bacterial Agents
0
DNA, Bacterial
0
DNA, Ribosomal
0
Pertussis Vaccine
0
RNA, Ribosomal, 23S
0
Erythromycin
63937KV33D
Types de publication
Journal Article
Langues
eng
Pagination
461-470Références
Trends Microbiol. 1999 Jan;7(1):29-36
pubmed: 10068995
Eur J Clin Microbiol Infect Dis. 2000 Mar;19(3):174-81
pubmed: 10795589
Int J Antimicrob Agents. 2001;18 Suppl 1:S25-8
pubmed: 11574191
J Clin Microbiol. 2002 Jun;40(6):1994-2001
pubmed: 12037054
J Clin Microbiol. 2003 Mar;41(3):1167-72
pubmed: 12624047
Nat Genet. 2003 Sep;35(1):32-40
pubmed: 12910271
J Med Microbiol. 2004 Aug;53(Pt 8):749-54
pubmed: 15272061
J Bacteriol. 2004 Aug;186(16):5496-505
pubmed: 15292152
J Bacteriol. 2006 Apr;188(7):2375-82
pubmed: 16547023
J Antimicrob Chemother. 2007 Nov;60(5):1178-9
pubmed: 17827145
J Med Microbiol. 2008 Dec;57(Pt 12):1577-80
pubmed: 19018032
Bioinformatics. 2009 Jul 15;25(14):1754-60
pubmed: 19451168
Bioinformatics. 2009 Aug 15;25(16):2078-9
pubmed: 19505943
Emerg Infect Dis. 2009 Aug;15(8):1206-13
pubmed: 19751581
Mol Biol Evol. 2011 Jan;28(1):707-15
pubmed: 20833694
Emerg Infect Dis. 2010 Nov;16(11):1695-701
pubmed: 21029526
Antimicrob Agents Chemother. 2012 Feb;56(2):1108-9
pubmed: 22106216
PLoS One. 2012;7(2):e31985
pubmed: 22348138
BMC Infect Dis. 2012 Jun 20;12:138
pubmed: 22892100
Clin Vaccine Immunol. 2012 Oct;19(10):1703-4
pubmed: 22914363
Antimicrob Agents Chemother. 2013 Oct;57(10):5193-4
pubmed: 23877687
Vaccine. 2013 Oct 25;31(45):5178-91
pubmed: 23994021
J Comput Biol. 2013 Oct;20(10):714-37
pubmed: 24093227
Emerg Infect Dis. 2014 Apr;20(4):626-33
pubmed: 24655754
MBio. 2014 Apr 22;5(2):e01074
pubmed: 24757216
Clin Microbiol Infect. 2014 Nov;20(11):O825-30
pubmed: 24816168
Eur J Clin Microbiol Infect Dis. 2015 Jan;34(1):147-152
pubmed: 25090968
Nucleic Acids Res. 2015 Jan;43(Database issue):D405-12
pubmed: 25300482
Jundishapur J Microbiol. 2014 Jun;7(6):e10880
pubmed: 25371806
Eur J Clin Microbiol Infect Dis. 2015 Apr;34(4):821-30
pubmed: 25527446
APMIS. 2015 Apr;123(4):361-3
pubmed: 25703275
Bioinformatics. 2015 Aug 15;31(16):2745-7
pubmed: 25851949
Clin Infect Dis. 2015 Sep 15;61(6):1028-9
pubmed: 26060284
J Clin Microbiol. 2015 Nov;53(11):3418-22
pubmed: 26224847
Sci Rep. 2015 Aug 18;5:12888
pubmed: 26283022
Clin Respir J. 2017 Jul;11(4):419-429
pubmed: 26365811
Vaccine. 2015 Nov 17;33(46):6327-31
pubmed: 26409140
Vaccine. 2015 Nov 17;33(46):6277-81
pubmed: 26432908
J Infect. 2016 Apr;72(4):468-77
pubmed: 26826518
Eur J Clin Microbiol Infect Dis. 2016 Jul;35(7):1211-4
pubmed: 27146879
Vaccine. 2016 Jul 25;34(34):3967-71
pubmed: 27346304
J Infect. 2017 Feb;74(2):204-207
pubmed: 27914992
Pediatr Infect Dis J. 2017 Jan;36(1):119-121
pubmed: 27956730
J Bacteriol. 2017 Mar 28;199(8):
pubmed: 28167525
Pediatr Infect Dis J. 2018 Jun;37(6):e145-e148
pubmed: 29088029
FEMS Microbiol Ecol. 2018 Apr 1;94(4):
pubmed: 29346541
J Glob Antimicrob Resist. 2018 Sep;14:12-16
pubmed: 29486357
Virus Evol. 2018 Jun 08;4(1):vey016
pubmed: 29942656
Genome Res. 2018 Sep;28(9):1395-1404
pubmed: 30049790
MMWR Morb Mortal Wkly Rep. 1994 Nov 11;43(44):807-10
pubmed: 7968996
Antimicrob Agents Chemother. 1997 May;41(5):1162-5
pubmed: 9145890
J Clin Microbiol. 1997 Nov;35(11):2989-91
pubmed: 9350776