Evolution of Superinfection Immunity in Cluster A Mycobacteriophages.


Journal

mBio
ISSN: 2150-7511
Titre abrégé: mBio
Pays: United States
ID NLM: 101519231

Informations de publication

Date de publication:
04 06 2019
Historique:
entrez: 6 6 2019
pubmed: 6 6 2019
medline: 25 1 2020
Statut: epublish

Résumé

Temperate phages encode an immunity system to control lytic gene expression during lysogeny. This gene regulatory circuit consists of multiple interacting genetic elements, and although it is essential for controlling phage growth, it is subject to conflicting evolutionary pressures. During superinfection of a lysogen, the prophage's circuit interacts with the superinfecting phage's circuit and prevents lytic growth if the two circuits are closely related. The circuitry is advantageous since it provides the prophage with a defense mechanism, but the circuitry is also disadvantageous since it limits the phage's host range during superinfection. Evolutionarily related phages have divergent, orthogonal immunity systems that no longer interact and are heteroimmune, but we do not understand how immunity systems evolve new specificities. Here, we use a group of Cluster A mycobacteriophages that exhibit a spectrum of genetic diversity to examine how immunity system evolution impacts superinfection immunity. We show that phages with mesotypic (i.e., genetically related but distinct) immunity systems exhibit asymmetric and incomplete superinfection phenotypes. They form complex immunity networks instead of well-defined immunity groups, and mutations conferring escape (i.e., virulence) from homotypic or mesotypic immunity have various escape specificities. Thus, virulence and the evolution of new immune specificities are shaped by interactions with homotypic and mesotypic immunity systems.

Identifiants

pubmed: 31164468
pii: mBio.00971-19
doi: 10.1128/mBio.00971-19
pmc: PMC6550527
pii:
doi:

Types de publication

Journal Article Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov't Research Support, U.S. Gov't, Non-P.H.S.

Langues

eng

Sous-ensembles de citation

IM

Subventions

Organisme : NIGMS NIH HHS
ID : R01 GM116884
Pays : United States
Organisme : NIGMS NIH HHS
ID : R35 GM131729
Pays : United States

Informations de copyright

Copyright © 2019 Mavrich and Hatfull.

Références

Microbiol Rev. 1978 Jun;42(2):385-413
pubmed: 353481
ISME J. 2016 Dec;10(12):2854-2866
pubmed: 27258950
J Bacteriol. 2004 Jun;186(12):3677-86
pubmed: 15175280
mBio. 2017 Aug 15;8(4):
pubmed: 28811342
Virol J. 2007 Jun 28;4:64
pubmed: 17598887
Virology. 1978 Feb;84(2):547-50
pubmed: 341501
J Bacteriol. 2006 Jun;188(11):3923-35
pubmed: 16707684
FEMS Microbiol Rev. 1995 Aug;17(1-2):121-6
pubmed: 7669337
Nat Methods. 2009 May;6(5):343-5
pubmed: 19363495
mBio. 2019 Mar 19;10(2):
pubmed: 30890613
Nucleic Acids Res. 2002 Jul 15;30(14):3059-66
pubmed: 12136088
Proc Natl Acad Sci U S A. 1991 Apr 15;88(8):3111-5
pubmed: 1901654
J Mol Biol. 2010 Mar 19;397(1):119-43
pubmed: 20064525
Nat Microbiol. 2017 Jul 10;2:17112
pubmed: 28692019
ISME J. 2011 Sep;5(9):1451-60
pubmed: 21412345
Microbiol Spectr. 2015 Feb;3(1):PLAS-0032-2014
pubmed: 26104561
EMBO J. 1989 Dec 20;8(13):4345-50
pubmed: 2531662
J Virol. 2010 Oct;84(19):10200-8
pubmed: 20660193
Annu Rev Microbiol. 2010;64:331-56
pubmed: 20528690
BMC Microbiol. 2017 Dec 02;17(1):225
pubmed: 29197343
J Bacteriol. 2013 Nov;195(21):4924-35
pubmed: 23995638
Nat Microbiol. 2017 Jan 09;2:16251
pubmed: 28067906
PLoS One. 2008;3(12):e3957
pubmed: 19088849
Elife. 2015 Apr 28;4:e06416
pubmed: 25919952
Virology. 1999 Oct 10;263(1):100-11
pubmed: 10544086
J Mol Biol. 1998 Nov 13;283(5):931-46
pubmed: 9799634
mBio. 2019 Mar 19;10(2):
pubmed: 30890601
PLoS One. 2015 Sep 02;10(9):e0137187
pubmed: 26332854
BMC Bioinformatics. 2011 Oct 12;12:395
pubmed: 21991981
J Bacteriol. 2004 Nov;186(21):7025-8
pubmed: 15489415
Microbiology. 2008 Aug;154(Pt 8):2304-2314
pubmed: 18667563
Cell. 1983 Dec;35(3 Pt 2):777-83
pubmed: 6652685
J Virol. 1971 May;7(5):559-68
pubmed: 4934087
PLoS One. 2011 Jan 27;6(1):e16329
pubmed: 21298013
Science. 2018 Mar 2;359(6379):
pubmed: 29371424
mBio. 2014 Feb 04;5(1):e01051-13
pubmed: 24496795
BMC Bioinformatics. 2010 Nov 26;11:579
pubmed: 21110866
EMBO J. 1997 Oct 1;16(19):5914-21
pubmed: 9312049
Annu Rev Microbiol. 1994;48:193-222
pubmed: 7826005
Nucleic Acids Res. 2012 Jul;40(Web Server issue):W569-72
pubmed: 22695796
Nature. 1982 Jul 29;298(5873):447-51
pubmed: 6896364
Genome Res. 2004 Jun;14(6):1188-90
pubmed: 15173120
Mol Microbiol. 2016 Aug;101(4):625-44
pubmed: 27146086
Bioinformatics. 2016 May 15;32(10):1555-6
pubmed: 26794315
Mol Microbiol. 1993 Feb;7(3):407-17
pubmed: 8459767
J Mol Biol. 2000 May 26;299(1):27-51
pubmed: 10860721
PLoS Genet. 2006 Jun;2(6):e92
pubmed: 16789831
Microbiology. 2015 Aug;161(8):1539-1551
pubmed: 26066798
Mol Microbiol. 2000 Dec;38(5):971-85
pubmed: 11123672
J Bacteriol. 2008 Nov;190(21):7052-9
pubmed: 18776007
Nat Ecol Evol. 2018 Oct;2(10):1633-1643
pubmed: 30201966
Mol Microbiol. 1995 Sep;17(6):1045-56
pubmed: 8594325
Microbiology. 2007 Aug;153(Pt 8):2711-2723
pubmed: 17660435
Cell. 1984 Sep;38(2):361-9
pubmed: 6540625
Brief Bioinform. 2013 Mar;14(2):178-92
pubmed: 22517427
Nucleic Acids Res. 2009 Jul;37(Web Server issue):W202-8
pubmed: 19458158
Mol Biol Evol. 2010 Feb;27(2):221-4
pubmed: 19854763
Nature. 2004 Sep 2;431(7004):99-104
pubmed: 15343339

Auteurs

Travis N Mavrich (TN)

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA.

Graham F Hatfull (GF)

Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA gfh@pitt.edu.

Articles similaires

Genome, Chloroplast Phylogeny Genetic Markers Base Composition High-Throughput Nucleotide Sequencing
Animals Hemiptera Insect Proteins Phylogeny Insecticides
Amaryllidaceae Alkaloids Lycoris NADPH-Ferrihemoprotein Reductase Gene Expression Regulation, Plant Plant Proteins
Drought Resistance Gene Expression Profiling Gene Expression Regulation, Plant Gossypium Multigene Family

Classifications MeSH